登陆注册
1766000000008

第8章 数学之谜(8)

最初的一种说法,认为这些线条是古代那斯克人的道路。但在1920年代后期和1930年代初期,考古学家利用飞机多次在荒原上空飞越考察,发现大批分布很广的复杂记号,此说从此被推翻。除了线条,机上考察人员还看到许多巨大长方形和其他几何图形,以及许多种动物的优美线条画,包括猴子、蜘蛛、蜂鸟甚至鲸,也有花朵、手掌和螺旋形图案,每个长约1米至183米不等。这样的线条显然不是道路。

虽然有些线条长达数公里,但不论它们越过哪一种地形,或甚至伸展到山顶,其直线的偏差在1公里内不过1~2米。究竟那斯克人在荒原上留下这样的记号来干什么?这些线条绝不是艺术作品,因为当时那斯克人不可能由高空俯瞰欣赏。同时,这些线条不管在高空摄影照片上显得多么壮观,也不是古代科学或工程杰作;因为只要动员1000名印第安人,费时3个星期,便可把所要移去的石头移去。至于线条何以会笔直,则可能是先排列几根标杆,在其间拉绳索画出直线来。用这种简单办法,如果与远方的一个准则点连合运用,只需要两三根木杆即可。

最使学者感到兴趣的并不是线条如何造成,而是线条有何用途。1941年,美国考古学家科索克首先到那斯克研究,发现许多线条和图案,并且一一记录下来。他的结论是:线条用以观察天文。此一说法引起德国数学家赖歇的兴趣。从1946年开始,她穷毕生精力,企图揭开这些线条的奥秘。赖歇和科索克一样,相信这些线条指向主要星座或太阳,以便那斯克人计算日期。她认为那些动物以及别的图形,也许代表某些星座,因此整个复杂的记号网很可能是一个巨型日历。

赖歇发现许多记号似与太阳或星座排成直线,但缺少确实证据支持她的说法。1968年,华盛顿史密生天体物理学天文台的天文学家霍金斯,在英国南部著名的新石器时代遗迹“巨形石柱”发现类似的天文定线之后,接着便将注意力转向那斯克线条。霍金斯拥有一种极有利的工具,用以探查那斯克人们的奥秘。这种工具就是电脑。他将彻底考察得到的资料输入电脑,藉以查测每一条直线在过去7000年内,是否曾对准太阳、月亮或一个主要星座。结果显示出一些使人耳目一新的定线。例如,一个名为“大长方形”的图形,在公元610年及其前后各30年内,对准昴星团。这个日期,与现场发现的一根木柱经放射性的碳素测定法鉴定的年代不谋而合。这个办法虽然可证明那些图形年代久远,但电脑仍不能解开线条的奥秘,因为那些似有特殊意义的定线,看来只是巧合而已。

1977年,英国电影制片家莫理林亦加人这项研究。莫理森曾在南美洲拍过几部电视片,其中包括赖歇和霍金斯的研究工作纪录片,因此也对这个谜团深感兴趣,决心要找出答案。莫理森认为要寻求解答,必须明了那斯克人的风俗和宗教。虽然那斯克人早已消失,但在安第斯山脉其他地区,某些地点亦有类似的线条存在,因此他希望居住在那些地点的印第安人,能够透露造这些线条的意图。

莫理森的好奇心受1926年发现这些线条的瑟斯丕启发。瑟斯丕告诉莫理森说,他相信这些线条是印第安人专作宗教用途的路径。瑟斯丕早在1939年就提出这种说法,但苦于找不到证据。莫理森则发现了一点线索,那是一本记载1653年以后事迹的西班牙编年史,里面记载印卡帝国首都库斯科的印第安人如何从太阳神殿出发,踏上伸向四面八方各直线,到沿途安设的神龛参拜。既然那斯克荒原上的线条在一堆堆石头之间,那些石堆不就是笔直的神圣路径连接的神龛吗?

于是,莫理森前往库斯科,希望找到那些神圣路径。他此行没有成功,因为路径的痕迹早已全部湮灭。但是他并不气馁,继续到邻国玻利维亚搜寻。1977年6月,莫理森终于在一个艾马拉人聚居的荒僻地区,找到了一整批并非移去荒原上的石块,而是割除灌木形成的线条。这些线条和那斯克荒原的线条一样笔直,也是不顾任何地势阻挡成直线向前伸展的。同时,正是这些线条将用石堆筑的神龛连接起来,而且许多神龛还筑于山顶。

艾马拉印第安膜拜这些石堆,相信石堆里面住着祖先和魂魄或当地神明,常常供奉一些小祭品或古柯叶(一种作用和缓的麻醉剂)。莫理森发现,好几条连接神龛的路线在一座庙宇会合。印第安人即沿着这些路线前往庙宇,途中不时停下来向沿路的神龛参拜。在他们看来,偏离这些路线就会走人妖魔鬼怪领域。艾马拉人还相信,神龛位置超高,其中神灵越具神威,由此可知为什么这里的路径也和那斯克的一样,不避任何险阻而直达山顶。

莫理森在后来所著的《朝圣之途》一书中,以生动笔法叙述他冒险探秘的经历,而且说出他相信那些线条就是“朝圣之途”。他认为那斯克图形可能是代表神灵及动物的精灵,那些已经清除石头的大块土地则可能是宗教集会的地点。至于这些线条的历史年代,由于缺乏足够证据,尚无法确定。最多我们只能说那斯克线条可能有1000至2000年的历史。

那斯克线条之谜迄今尚未完全揭晓,莫理森的结论仍然有待证实。而且不管是出于巧合还是有意,有些线条的确像天文学上的定线。目前,那斯克线条受到保护,以供日后研究,因为每一块没有翻起的石头可能隐藏着重要的线索。

不用计算机能证明“四色问题”吗?

1976年有两位年轻的科学家阿佩尔和哈肯应用计算机证明了“四色问题”。当时为世人所震惊。这是依靠计算机证明的惟一的大定理。

“四色问题”也称“四色猜想”。我们在绘制地图时,为了区别一个国家与它的邻国,一个省区与它邻近的省区,总要给不同的国(省区)与它的相邻近的国(省区)画上不同的颜色。当我们打开任何一本彩色地图册就会发现,只有四种颜色。也就是说,用四种颜色就可以把各国(省区)区分出来。这就是“四色问题”。更确切地说,在平面上或球面上绘制地图只需要用四种颜色。

提出四色猜想的第一位数学家是德国的莫比乌斯,这是1840年的事。1850年一位英国学生叫葛斯瑞也认为绘制地图四种颜色足够了。其后不久,他给弟弟写信并“证明”这个猜想正确:可惜这个证明被遗失了,许多数学家认为此证明可能也是错的。他的弟弟把葛斯瑞的这一想法写信告诉美国几位有名望的数学家,希望他们证明四色猜想。但直到1879年,其中的凯雷虽然对此问题很感兴趣,但他宣布无法证明四色猜想。

继凯雷之后,有一位从事律师工作的肯普在数学学术杂志上发表了一篇论文,说他“证明”了四色问题。可惜,他的证明也是错误的,这个错误在1899年被数学家希伍德指出。而希伍德本人发表了一篇严密论证的文章,但是他只证明五色,没有证明四色。当然,从五色着手改进方法或许能证明四色,但问题并不这样简单,从那以后一百多年以来,许多数学家都想证明四色猜想。开始选择另外的方向,在国家数目上加以限制。首先是费兰克林在1920年证明,当国家的数目≤25时,四色定理成立。1926年国家数提高到27,1936年提高到31,1943年又提高到35,1968年又提高到40。为什么国家数目增加得如此之慢呢?因为每增加一二个,不同国家之间的边界关系类型就会变得复杂得多,而证明的关键是必须把地图的所有类型都考虑进去,这就给证明带来更大的困难。所以,很长时间内,四色问题未能加以证明。

1976年,阿佩尔和哈肯利用计算机加以证明,前后花了七个月时间。第一步是把所有可能的地图类型归结为有限多个不同的类型,他们归类成1936个。仅这一步就耗时六个月;第二步是证明它们用四色足够,花了一个月时间。在计算机的帮助下,他们完成了这个证明。

但是从1976年以来,有不少数学家对此抱有怀疑态度。不论怎么说,这件事本身说明电子计算机对数学家来说是不可缺少的工具。我们的想法是,能不能找到不依赖电子计算机的人工证明,关于这一关,仍然有数学家在不断的探索中。但愿功夫不负有心人。

寻找相亲数

公元前6世纪,古希腊有个毕达哥拉斯学派,学派的创始人是数学家毕达哥拉斯。这个学派特别喜欢数、推崇数,他们把人性也赋予了数。比如,他们把大于1的奇数象征为男性,起名叫“男人数”;把偶数看做女性,叫“女人数”(也有史书记载,把奇数象征女性,偶数象征男性)。数5是第一个男人数与第一个女人数之和,它象征着结婚或联合。

人之间讲友谊,数之间也有“相亲相爱”可言。毕达哥拉斯学派的人常说:“谁是我的好朋友,我们就会像220和284一样。”为什么220和284象征着好朋友呢?原来220除去本身以外还有11个因数,它们是1、2、4、5、10、11、20、22、44、55、110。这11个因数之和恰好等于284。同样,284的因数除去它本身还有1、2、4、71、142,它们的和也恰好等于220。即

1+2+4+5+10+11+20+22+44+55+110=284;

1+2+4+71+142=220。

这两个数是你中有我,我中有你,相亲相爱,形影不离。古希腊的数学家给具有这样性质的两个数,起名叫“相亲数”或“亲和数”。

220和284是人类发现的第一对“相亲数”,也是最小的一对“相亲数”。17世纪法国数学家费马找到了第二对“相亲数”17296和18416;几乎在同一时期,另一位法国数学家找到了第三对“相亲数”9363544和9437056。最令人震惊的是,瑞士著名数学家欧拉于1750年一次就公布了60对“相亲数”。数学家惊呼:“欧拉把一切‘相亲数’都找完了!”

谁料想,又过了一个世纪,意大利一位年仅16岁的青年巴格尼于1866年公布了一对“相亲数”,它们只比220和284稍大一点,是1184和1210。前面提到的几位大数学家竟无一人找到它们,让这对不大的“相亲数”从鼻子底下轻易地溜走了。

最近,美国数学家在耶鲁大学的电子计算机上,对所有110万以下的数逐一进行了检验,总共找到了42对“相亲数”。下面列出10万以内的13对“相亲数”:

220=2×2×5×11,

284=2×2×71;

1184=2×2×2×2×2×37,

1210=2×5×11×11;

2620=2×2×5×131,

2924=2×2×17×43;

5020=2×2×5×251,

5564=2×2×13×107;

6232=2×2×2×19×41,

6368=2×2×2×2×2×199;

10744=2×2×2×17×79,

10856=2×2×2×23×59;

12285=3×3×3×5×7×13,

14595=3×5×7×139;

17296=2×2×2×2×23×47,

18416=2×2×2×2×1151;

63020=2×2×5×23×137,

76084=2×2×23×827;

66928=2×2×2×2×47×89,

66992=2×2×2×2×53×79;

67095=3×3×3×5×7×71,

71145=3×3×3×5×17×31;

69615=3×3×5×7×13×17,

87633=3×3×7×13×107;

79750=2×5×5×5×11×29,

88730=2×5×19×467。

这里把自然数都分解成质因数的连乘积,有了质因数就可以找出这个数的所有真因数,进而就可以判断两个数是不是相亲数。比如,220=2×2×5×11,284=2×2×71,其中220所含的质因数是2、2、5、11,这时就可以知道220的因数是1、2、2×2、5、2×5、11、2×2×5、2×11、2×2×11、5×11、2×5×11,一共是11个,这11个数相加恰好等于284;而284的质因数是2、2、71,由它们和1组成的因数是1、2、2×2、71、2×71,共5个,这5个真因数之和恰好是220,这样一来就证明了220和284是一对“相亲数”。由上面做法不难看出,把一个数分解为质因数的连乘积是寻找或证明“相亲数”的关键。

目前,找到的“相亲数”已经超过1000对。但是,“相亲数”是不是有无穷多对?它们的分布有什么规律性?这些问题到目前为止数学家也没有得到确定的答案。这还是一个有待探索的课题。

1946年,第一台计算机的诞生,结束了笔算寻找相亲数的历史。据70年代统计,人们共找到1200多对相亲数,并且,有人还曾有序不漏地用计算机检验与搜寻相亲数,例如近10年来,美国数学家在耶鲁大学先进的计算机上,对所有100万以下的数逐一进行检验,总共找到了42对相亲数,发现10万以下的仅有13对,部分地消除了对欧拉等人列出的相亲数数表的疑虑。但因计算机功能与数学方法的不够,还没有重大突破,越往下去,难度更大。

目前,寻找相亲数还有许多有待探求的问题,如:目前找到的每一对相亲数所含的两个数,总是同时为偶数或同时为奇数,是否存在一个是偶数,而另一个是奇数的相亲数?目前找到的奇相亲数均是3的倍数,这是偶然性,还是必然规律?等等。

5000年的人类文明给我们留下了浩瀚无边的知识大海。在汪洋大海中最古老也最深沉的是数。数的理论研究成为科学基础的基础。德国大数学家高斯曾把数的理论置于科学之巅,这一点也不过分。然而,时至今日,这个数的世界仍然是一个充满神秘的威严的“湖夫金字塔”,这里涉及的“亲和数”也是其中一个最富有传奇色彩的世界难题,有许多谜待揭开,谁揭开谜谁就是英雄好汉。

上面回顾2000多年数学家的不懈努力,发现了1000对以上的相亲数,“看似平凡最崎岖,成如容易确艰辛”,未来的工作正等待着不畏困苦的数学家与计算机专家,“路漫漫其修远兮,吾将上下而求索”。

传说,古代有一个秀才游桂林的斗鸡山,觉得山名有趣,信口说出一句话:

“斗鸡山上山鸡斗。”

他想把这句话作为上联来对一副对联,可是下联自己也对不上来。回家后便请教自己的老师,老师想了一下说:“我不久前游览了龙隐洞,就以此给你对个下联。”老师念道:

“龙隐洞中洞隐龙。”

对得很巧。这是一副回文对联。

古代诗人王融曾写过一首著名的回文诗:“风朝拂锦幔,月晓照莲池。”反过来读:“池莲照晓月,幔锦拂朝风。”不管怎样读,都是一首诗。

有趣的是,数学家族里的主要成员数中也有回文的,你看数101,正着读倒着读都是101;再看32123,正着读倒着读都是32123。这种正反读都一样的数很多,数学家给它们起了一个特殊的名字——回文式数,简称回文数。

同类推荐
  • 天文探谜

    天文探谜

    本套全书全面而系统地介绍了中小学生各科知识的难解之谜,集知识性、趣味性、新奇性、疑问性与科普性于一体,深入浅出,生动可读,通俗易懂,目的是使广大中小学生在兴味盎然地领略百科知识难解之谜和科学技术的同时,能够加深思考,启迪智慧,开阔视野……
  • 一只乡村老鼠的传奇经历

    一只乡村老鼠的传奇经历

    本书所选的百余则童话,是作者从事寓言童话创作十几年来精品力作。这些童话或长或短,或校园故事,或动物传奇,每一篇都凝聚着作者对事物对社会的理解和人生的感悟。
  • 行星与恒星(自然瞭望书坊)

    行星与恒星(自然瞭望书坊)

    人类是宇宙演化的杰作,宇宙是神秘莫测的存在。当宇宙的精灵与莫测的神秘结合在一起时,便碰撞出无数精彩的篇章。人类对宇宙的解读和探秘跨越了千年,宇宙的面貌也越来越清晰地展现在人类面前。
  • 交际故事(影响青少年一生的中华典故)

    交际故事(影响青少年一生的中华典故)

    《交际故事》每个典故包括诠释、出处和故事等内容,简单明了,短小精炼,具有很强的启迪性、智慧性和内涵性,非常适合青少年用于话题作文的论据,也对青少年的人生成长以及知识增长具有重要的作用。
  • 英国大冒险(环游世界大探险)

    英国大冒险(环游世界大探险)

    据情报显示,卡西欧博士越狱后准备和英国的大毒枭进行一场交易。于是莱恩和卡奇、米娜一起来到了英国,开始了他们的英国冒险之旅。在旅途中他们还结识了很多的朋友,发生了很多新奇有趣的故事。通过他们在旅行中的所见所闻,我们可以了解英国的地理、历史、名人、古迹、人文、科学和风俗习惯……
热门推荐
  • 中国文学名著导读

    中国文学名著导读

    高岩、陆明、李松石、闫冰编著的《中国文学名著导读》是按照文学史的时间顺序架构的,体系比较严谨,选篇的版本也比较规范。在选篇上照顾到所选文章的思想性、经典性以及丰富性,考虑到教师在讲课时的拓展空间,备选课文也比较充分。赏析文章侧重编者原创,注意融入时代精神。在现当代文学的篇章里,所选篇章与赏析都比较独到。《中国文学名著导读》除做教材外,也适合一般文学爱好者自学阅读。
  • 千瘴

    千瘴

    “陆璃!你可知她罪孽深重!就算入了十八层地狱也无法消其业障!”上生星君大声痛斥。“我知道。”“你可知道她一怒,居然取了十万生灵性命!”火德星君怒目圆睁。“你还不速速将她交出,好给天下生灵一个交代!”陆璃抬眸望向天庭众人,慢慢的笑了。“我既与她拜了天地,昭告九州。”他理了理衣袖,抚过袖子上绣着的小花“那便是夫妻一体,你们如若想带我家娘子走······”“你待如何?”火德星君气的大叫。“九州之水倒流,不知各位仙君档不挡得住。”陆璃眯了眯眼,语气轻松的像是在说今天天气很好一般。“珍珍,我愿为你倒流九州之水,愿为你背千年业障,只求你,再一次与我结为夫妻。”“君上,我愿为你削去仙骨,愿为你魂飞魄散,只求你,忘了我吧。”
  • Heretics

    Heretics

    本书为公版书,为不受著作权法限制的作家、艺术家及其它人士发布的作品,供广大读者阅读交流。汇聚授权电子版权。
  • 3岁决定男孩的一生

    3岁决定男孩的一生

    3岁的小男孩就像一粒神奇的种子有一句众人皆知的俗语:“3岁看大,7岁看老。”说明了幼儿亲子教育的重要性,尤其是3岁左右的男孩。这个年龄段养成的一些习惯,会直接影响他们的一生,决定了他们将来能做成一番什么样的事业,成为什么样的人。
  • 瑜伽翳迦讫沙啰乌瑟尼沙斫讫啰真言安怛陀那仪则一字顶轮王瑜伽经

    瑜伽翳迦讫沙啰乌瑟尼沙斫讫啰真言安怛陀那仪则一字顶轮王瑜伽经

    本书为公版书,为不受著作权法限制的作家、艺术家及其它人士发布的作品,供广大读者阅读交流。汇聚授权电子版权。
  • 活着就得乐:侯长喜笑话集

    活着就得乐:侯长喜笑话集

    本书由候长喜先生从自己编创的笑话段子中筛选了365段集结而成。所收录的笑话涉及道德、世讳、术业、贪吝等诸多方面,立意深刻,题材新颖,以讽刺为手段,针砭时弊,使读者在大笑之后顿悟、反省、思考与向上。这种笑的价值,是对简单愉悦功能的超越,是滋润温暖人们心田的良药,体现了作者的功底与境界。
  • 太古神帝在都市

    太古神帝在都市

    赵辰,一个混迹都市的小子,一次寻宝,得到神帝传承,从此一飞冲天!通天石碑,可以穿越位面做最牛逼的虚空商人。轮回之力,不死不灭!十万法则,信手拈来,我就是天才,我要当神帝,一统三千大世界,喝最烈的酒,打最牛的怪,泡最美的妞!好吧!其实小爷就喜欢装个逼。新书,萌萌修仙系统,起点首发!
  • 间客

    间客

    世界上有两件东西能够深深地震撼人们的心灵,一件是我们心中崇高的道德准则,另一件是我们头顶上灿烂的星空——康德当许乐从这行字上收回目光,第一次真正看到尘埃后方那繁若芝麻的群星时,并没有被震撼,相反他怒了:大区天空外面的星星这么刺眼,谁能受得了?天天被这些光晃着,只怕会变成矿道上那些被大灯照成痴呆的野猫!于是许乐放弃了成为一名高贵女性战舰指挥官辅官的梦想,开始在引力的作用下,堕落,堕落,堕落成了看门房的外乡穷小子,出卖身体的可怜男子,从事繁琐工作的男保姆……在波澜壮阔的大时代里,露着白牙,眯眼傻笑,披着莫名的光辉,一步一步地迈向谁也不知道的远方。…………许乐,东林大区公民,从一颗荒凉的半废弃星球上离开,脑海里拥有一些希奇古怪的知识,身体里拥有这个世界谁也不曾接触过的力量,并不浑沌,一味荒唐知足地进入了这个最无趣也是最有趣的世界。间客的人生,一定很精彩。
  • 杜明权中篇小说集

    杜明权中篇小说集

    《杜明权中篇小说集》收集了作者2015年6月至2016年间创作的三部中篇小说:《逃离我视线的春儿》、《我的工业时代》、《我的房地产时代》。《逃离我视线的春儿》表面看似是一部关于“我”、春儿、秋娟的爱恨悲喜剧,似乎属于爱情小说,但实际反映了某些社会情态。《我的工业时代》通过主人公“我”与张丽儿的故事,表现一代人曾经的乡镇企业时代的人生。《我的房地产时代》叙述了“我”(余浩)在亲戚余文欣带领下,逐步进入社会,步入风起云涌的房地产行业,最后终至失足并幡然悔悟。三部中篇小说虽然悲剧成分较浓,但均为悲喜剧,反映了不同时代的社会变化前行状况以及个人人生历程,与其作为小说文本,毋宁作为哲学文字慢慢阅读更好。
  • 世界上最复杂的落水者

    世界上最复杂的落水者

    工作是嘉兴市中级法院的一名法官。已发表小说100万余字,散见于《小说选刊》、《中篇小说选刊》、《中国作家》、《江南》、《山花》、《百花洲》等期刊。