登陆注册
3270200000006

第6章 数学未解之题(3)

我国著名数学家华罗庚最使人们感到惊奇的是,自然界很多现象都与斐波那契数列有关。科学家们发现蜜蜂的繁殖速度也符合斐波那契数列。除了动物的繁殖外,植物的生长也与斐波那契数有关。如果一棵树每年都在生长,那么,一般说来,第一年只有主干,第二年有2枝,第三年有3枝,最后是5枝、8枝、13枝等,每年的分枝数正好为斐波那契数。还有一些学者发现自然界中花朵的花瓣数目也与斐波那契数有关。生物学中的“鲁德维格定律”,就是斐波那契数列在植物学中的应用。对于以上现象怎样解释呢?是偶然的巧合吗?大多数科学家认为,绝不是巧合。是这些动植物也懂得优选法吗?不是!其实道理很简单,自然界的生物在进化过程中都不自觉地服从着一条原则——“适者生存”,只有按照最优方案发展,才能很好地生存下去,否则就会慢慢被淘汰。这个说法正确吗?至今还被人们研究和印证着。

不可思议的“倍增效益”

两千多年前的希腊著名数学家阿基米德,曾经和当时的希腊国王打赌,让他在象棋格子盘(国外象棋每盘有64格)上每格每天放米,要求以后放的米粒数是前一天的一倍……等到国王按规则放完64倍后,他竟然输掉了全国的谷仓!……这就是倍增法的神奇效应,从最初的一个很小的数字,最后变成成千上万甚至无穷大……其效果是一般人无法想象的。这不仅反映一个数字规律,生物界的很多生物的生长都是遵循这一规则的,包括我们人类的细胞变化……从一定程度上来说,是倍增法则造就了这个丰富多彩的世界,也是倍增规律令我们感受到世界的神奇……倍增法则的存在告诉我们,任何事物都是人类可以掌控的。倍增的规则引发的后果可能令人目瞪口呆,开始微不足道的数字会变成巨大的不可想象的数字。因此,如果有人用倍增法和你打赌,你一定不能应战。另外,刚开始听起来很占便宜的事情,往往会吃亏。下面这个故事就是一个关于倍增应用的有趣的故事。

符合倍增法的植物

从前国外有个贪财的大富翁,虽然已非常有钱,可是每天还在盘算着如何得到更多的钱。一天,富翁在路上遇到一个衣着俭朴的年轻人,他连眼皮也没眨一下,就走了过去。年轻人自言自语地说:“1分钱换10万元总会有人干的……”富翁一听,急忙回头叫住年轻人:“喂,你说的换钱是怎么回事?”年轻人很有礼貌地一鞠躬说:“先生,是这样的,我可以在一个月内,每天给你送来10万元钱,虽然不是白给,但是代价是微不足道的,第一天只要你付我1分钱。”“1分钱?”富翁简直不敢相信自己的耳朵。“对,是1分钱。”年轻人说,“第二天再给你10万元时,你要付两分钱。”富翁急切地问:“以后呢?”“第三天,付4分钱;第四天,付8分钱……以后每天付给我的钱数都要比前一天多一倍。”“还有什么附加条件呢?”“就这些,但我们俩都必须遵守协定,谁也不准反悔!”于是,俩人签订了协定。10万元换几分钱!真是难得的好事!富翁满口答应:“好!就这样。”第二天一清早,年轻人准时到来,他说:‘先生,我把10万元送来了。”随即从大口袋里掏出整整10万元,并对富翁说:“下面该你付钱了。”富翁掏出一分钱放在桌子上,陌生人看了看,满意地放入衣袋说:“明天见。”说完走出门去。10万元钱从天而降!天下最大的便宜事叫富翁遇上了,他赶忙把钱藏了起来。第二天早晨,年轻人又来了,他拿出10万元,收下两分钱,临走时说:“明天请准备好4分钱。”第二个10万元又到手了!富翁乐得手舞足蹈。心想这个年轻人又蠢又怪!世上这样的人要是多几个多好,我们这些聪明人就会发了还要发,变成举世无双的大富豪了。第三天,年轻人用10万元换走了4分钱。第四天换走8分钱,以后又是1角6分、3角2分、6角4分,七天过去了,富翁白白收人70万元,而付出的仅仅是1元2角7分,富翁真想把期限再延长些,哪怕多半个月也好呀!年轻人照常每天送10万元来,第八天付给他1元2角8分,第九天付2元5角6分,第十天付5元1角2分,第十一天付10元2角4分,第十二天付20元4角8分,第十三天付40元9角6分,第十四天付81元9角2分。十四天过去了,富翁已经收入整整140万元,而付出的才150元多一点。又过了一段时间,富翁慢慢感到年轻人并不那么简单了,换钱也不像最初想象地那样合算了,十五天过后,每收入10万元,付出的已是几百元了,不过,总的来说还是收入的多,支出的少。可是,随着天数的增加,支出在飞速地增大,纯收入在逐日减少,第二十五天,富翁支出167772元1角6分,第一次超过了收入;第二十六天支出335544元3角2分,大大超过了收入;到了第三十天支出竟达5368709元1角2分。年轻人最后一次离开时,富翁连续算了一昼夜,终于发现:为了收入330万元,他付出了10737418元2角3分,亏了近800万元,富翁失算了!计算一下富翁付出的总钱数,以分为单位的话,就有以下三十个数相加:1+2+4+8+16+32+64+……+538870912。为了算出这个和,可以写成算式:1+2+4=2×2×2-11+2+4+8=2×2×2×2-1,……1+2+4+8+……+536870912=2×2×…×2-130个=1024×1024×1024-1=1073741823(分)从一分钱到一千万,短短的三十天时间,就发生了如此不可思议的改变!这是一个以智慧取胜的故事。其实倍增就是一种智慧,可以被运用到生活各个方面。它带来的效果总是神奇的。

扑朔迷离的“回文数猜想”

“回文”是文学中的一种修辞方法,指写成的句子前后两个字相同,就像“回”到了以前一般,因此称为回文。回文句正读倒读都可念,而且都可以读得通。这是文学中比较有趣的一种现象。但是这种现象在数学中也存在,我们称之为“回文数”比如121,101等等,指正读倒读都是同一个数。更有趣的是,人们在寻找回文数的时候发现,把任意一个两位以上自然数倒过来相加都能得到一个回文数。这就是著名的“回数猜想”。但是这个规则是不是放之四海而皆准呢?目前仍然没有人能证明。因此这是一个数学上著名的未解之谜。前面提到过哲学和数学相通的问题,但是数学和文学同样也有相通的现象,这听起来似乎令人觉得不可思议。但是的确存在,“回文”就是其中一例。传说,古代有一个秀才游桂林的斗鸡山,觉得山名有趣,信口说出一句话:“斗鸡山上山鸡斗。”他想把这句话作为上联来对一副对联,可是下联自己也对不上来。回家后便请教自己的老师,老师想了一下说:“我不久前游览了龙隐洞,就以此给你对个下联。”老师念道:“龙隐洞中洞隐龙。”对得很巧。这是一副回文对联。古代诗人王融曾写过一首著名的回文诗:“风朝拂锦幔,月晓照莲池。”反过来读:“池莲照晓月,幔锦拂朝风。”不管怎样读,都是一首诗。有趣的是,数学家族里的主要成员数中也有回文的,你看数101,正着读倒着读都是101;再看32123,正着读倒着读都是32123。这种正反读都一样的数很多,数学家给它们起了一个特殊的名字——回文式数,简称回文数。围绕着对回文数的研究,数学家们发现,有的回文数不老实,不是明明白白地站在数字的队伍里,而是隐藏在其他数里,经过特殊变换以后才显露真容。比如83,它不是回文数,将它与其倒数相加,83+38=121,就变成了回文数121。经过多次验算,数学家提出了一个猜想:任取一个自然数,把它倒过来与原数相加,然后把这个和数再与它的倒数相加,一直重复这个运算,最后总能得到一个回文数。数学家把这个猜想叫做“回数猜想”。请看:83:83+38=121,经过1步运算就能得到回文数121;68:68+86=154,154+451=605,605+506=1111,1111是回文数,只需3步运算就能得到;195=195+591=786,786+687=1473,1473+3741=5214,5214+4125=9339,要运算4步,得到的回文数是9339。是不是所有数经过上述运算都能产生回文数?也就是说,回数猜想是对的还是错的?这个问题至今没有解决。最初,人们是一个数一个数地去验算。当有人对196进行上述运算时,算了5万步,所处理的数已达到21000位,仍没有获得回文数。人们就猜测,也许196永远也变不成回文数。如果真的是这样,那么“回数猜想”就是错误的。然而,不管你算了多少步,这种运算总没到头,没到头就不能否定,要否定必须给出足够的理由。后来,人们又发现,在10万个自然数中,有5996个数,不管运算多久,似乎也产生不出回文数,196就是其中最小的一个。但是,不管怎样运算,就是没有人能找出它们产生不了回文数的确凿证据来。所以只能用含糊的词“似乎”来表述。此路不通。一些数学家就采取另外的方法来研究。他们对既是质数又是回文数的数进行了特别的研究,一方面想看看这些数有什么特性或规律,另一方面也想从中找出证明回数猜想的蛛丝马迹。通过研究,数学家发现了一些有特殊性质的回文质数。比如19391,把它的5个数字写在一个圆周上,你从其中任一个数开始,不管是顺时针写还是逆时针写,写出来的5位数都是质数。这种回文质数很少。数学家还发现回文质数除11外必须有奇数个数字。因为每个有偶数个数字的回文数,必然是11的倍数,所以它肯定不是质数。比如125521是一个有6位数字的回文数。判断能被11整除的方法是:一个数所有偶数位数字之和与所有奇数位数字之和的差是11的倍数,那么这个数就能被11整除。125521的奇数位数字是1、5、2,而偶数数字是2、5、1,而偶数位数字是2、2、1,它们和的差是:(2+5+1)-(1+5+2)=0是11的倍数,所以125521可以被11整除,它不是质数。有些回文数相乘之后,所得乘积还是回文数。例如212X141=29892。这样的例子还不少:11X11=121,22×22=484,111X 111=12321,111X 121=13431,111X131=14541,121X212=25652。在回文数中平方数是非常多的,比如121=112,12321=1112,1234321=11112……一直到12345678987654321=1111111112。你随意找一些回文数就会发现,平方数所占的比例比较大。立方数也有类似情况。比如1311=113,1367631=1113等等。对回文质数的研究虽然取得了一些成绩,发现了一些特性,但是用它们也不能证明“回数猜想”。“回数猜想”证明不出来,却没有挡住数学家想象的驰骋。他们又大胆地猜想:回文质数有无穷多个;回文质数对(中间的数字是连续的,而其他数字都相等,如30103和30203)也有无穷多对。但是也没有人能证明这些猜想是对的。扑朔迷离的回文质数又给数学家们出了一个难题。回文数无论在文学还是数学中都是一个有趣而奇特的现象。虽然关于它的奥秘,还没有完全解开,但是它们的存在向人们证实了,自然界永远有神秘的现象等待人们去揭示。

同类推荐
  • 神奇物种科学美图大观(青少年神奇世界科学图文丛书)

    神奇物种科学美图大观(青少年神奇世界科学图文丛书)

    本套书针对广大读者的好奇心理和探索心理,全面编撰了世界上存在的各种奥秘未解现象和探索发展,具有很强的系统性、知识性和神秘性,能够启迪读者思考、增长知识和开阔视野,能够激发读者关心世界和热爱科学,能够培养读者的探索和创新精神。
  • 飞碟现象未解之谜

    飞碟现象未解之谜

    有一种圆碟状的发光体,它总是不经意地出现在星空中,忽明忽暗在空中飞旋,不停变换着方位和角度。它能在空中旋转,长时间停留,还能发出各种绚丽的光芒——这个在世界各地都曾发现的神秘的物体,引起人们太多的讨论和猜想,成为人类探索宇宙的最大谜题之一。很多人都认为它是外星人到达地球的飞行器,也有人认为它是一种气象或者天文现象,但是至今,也没有一个确切的答案。因为它的外形通常是圆盘,而且闪着光飞翔在宇宙中,人们因而称之为“飞碟”;同时因为它来历不明,又被称为“不明飞行物”(unidentified flying object ),英文简称“UFO”。
  • 社会文明的标志:化学

    社会文明的标志:化学

    在日常生活中,人们处处离不开化学。懂点化学知识,我们对生活会更加明了。服装,尤其是现代的服装,很多都是用化学方法生产制造的人造纤维;人一天需要多少蛋白质,需要多少微量元素,从哪里摄取,化学可以告诉你;进食后,食物如何消化分解,如何进行反应变化,成为人体所需的能量,生物化学可以告诉你答案;哪些物质是有毒的,是致癌的,如何避开这些物质,使自己免受不必要的伤害,化学也可以告诉你。本书从简单的化学知识入手,直白又有趣地讲述了生活中一些司空见惯的事物的来历、用途、种类等。全书深入浅出,集知识性、实用性和趣味性于一体,是一本对青少年大有裨益的化学科普读物。
  • 海洋中取之不尽的宝藏(认识海洋系列丛书)

    海洋中取之不尽的宝藏(认识海洋系列丛书)

    面对浩瀚的海洋,人类不得不重新思索生存的空间地球表面上大部分是海洋,陆地的面积还不到地球面积的1/3。此外,陆地上还有1/3的地方是沙漠,那里人类无法生存。60多亿的人口栖息在这不到地球1/5的面积上,人类感到太拥挤。于是,面对浩瀚的海洋,人类不得不重新思索他们的生存空间。
  • 能源宝库

    能源宝库

    科学是人类进步的第一推动力,而科学知识的普及则是实现这一推动的必由之路。在新的时代,科技的发展、人们生活水平的不断提高,为我们青少年的科普教育提供了新的契机。抓住这个契机,大力普及科学知识,传播科学精神,提高青少年的科学素质,是我们全社会的重要课题。科学教育,是提高青少年素质的重要因素,是现代教育的核心,这不仅能使青少年获得生活和未来所需的知识与技能,更重要的是能使青少年获得科学思想、科学精神、科学态度及科学方法的熏陶和培养。科学教育,让广大青少年树立这样一个牢固的信念:科学总是在寻求、发现和了解世界的新现象,研究和掌握新规律,它是创造性的,它又是在不懈地追求真理,需要我们不断地努力奋斗。
热门推荐
  • 逆袭大清

    逆袭大清

    乾隆二十年,他穿越了……一把断刀战土匪,满身怒气干满清。其中的曲折谁能明了?本书群:719679759
  • 废后归来:至尊凤华

    废后归来:至尊凤华

    前世她贵为大将军之女,从小与太子青梅竹马,成为最尊贵的皇后。那知后宫深似海,从前青梅竹马却也不过转瞬即逝。胎儿被害,打入冷宫,弟弟为救自己而死,却遭受满门抄斩。一朝为敌国宠妃,匕首亲自插入他胸膛,鲜血染红了白色长裙,大仇终报,匕首插入自己心脏,终于得以解脱!却知重生回到了小时候,或许只是为了亲口和他说一句对不起!安嫣然;我若在你心上,情敌三千又何妨。温懿轩;你若在我身旁,负了天下又怎样。安嫣然;你赢,我陪你君临天下,你输,我陪你重头再来。温懿轩;你生,我陪你踏破天涯;你死,我守你直到白发。一句话文案;淡漠女扑到腹黑男的故事。青梅竹马,宠文~
  • 千年之爱

    千年之爱

    他等了她千年,而她却等了他千年。莫名的穿越,让穆雨与那绝色的男子生活了八年。他说:“你要帮轩辕无痕成为皇帝。穆雨有些不可置信的回道:“我可以么?”八年后他丢了心,却还是不得不将她送到他的身边。而八年后相遇相知,他对她最终却也无法自拔。当爱情白痴遇上各个美男,是她的幸还是他们的不幸。不食人间烟火的慕容零,热情如火的凤天楼,冷酷冰冷的轩辕无痕,时时粘着她的的轩辕景,谁才是那个千年前她爱上的男子?谁才是等待了她千年的男子?【情节虚构,请勿模仿】
  • 穿越之妖女也无奈

    穿越之妖女也无奈

    雪晴裳是乖乖女,乖到老师父母说什么,听什么的地步,可是为何一夕的穿越,自己变成了人见人怕,人见人骂的妖女,阴谋与爱情,幸福与悲伤,自己该如何取舍,如何抉择。。。。。“为什么其他人穿越女尊国,坐拥美男恩,我当个女皇却如此窝囊?”雪晴裳望着苍天,悲怆道。以幽默为主线,以情节为基础,给你不一样的穿越体验。
  • 失灵族

    失灵族

    陈启言,表面是一个刑警队的队长,实际上他是来自于一个没有灵魂的种族-失灵族。失灵族生活在界面,界面之上是天界,而界面之下便是人间。自小陈启言便被父亲送到了人间生活,他被告诉“失灵族是守护人间和平和秩序的使者”,然后他却发现事实并不是他父亲对他所说的那样!天界生活着世间的最强者,却也是侵犯人间的侵略者,只有世间的万物创造者-塔灵,可以克制住天界。然而百万年前塔灵失踪,陈启言来到人间终于找到了塔灵!但是也遇到了一个让他魂牵梦萦的女人......
  • 快穿之女配系统要上天

    快穿之女配系统要上天

    某女一直觉得自己活得还不错,直到被某个系统绑上,才知道这一切都是假象!某系统:“宿主,你想活吗?想活就和本系统绑定,绑定以后好处多多,变成白富美,迎娶高富帅,走上人生巅峰!”某女淡淡地瞥了某二货系统一眼,道:“我只是自己想活,不用和我扯这些没用的。”某系统的显示屏上滑下几条黑线,“……”当初选这个宿主是对是错?
  • 卡尔·威特教育全书

    卡尔·威特教育全书

    这是一部伟大的亲子教育经典,对卡尔·威特父子的教育思想进行了阐述和解读,提出每个普通孩子在适当的教育下都能成为优秀的人才的理念,书中提供的方法具体可行,是一本父母教育孩子的必读书。
  • 明王爷的傲娇丫鬟

    明王爷的傲娇丫鬟

    一个脚滑穿越到萧王府,成为萧王府明王爷的丫鬟,似涯清只想安安静静做个小丫鬟,找个时机穿越回现代,至于那个传闻又冷酷又无情又腹黑的明王爷,当然是有多远离多远啦!只是这王爷逮着似涯清不放了,踹都踹不开呀……
  • 此事难知

    此事难知

    本书为公版书,为不受著作权法限制的作家、艺术家及其它人士发布的作品,供广大读者阅读交流。汇聚授权电子版权。
  • 血族公主别想逃

    血族公主别想逃

    她,冷酷无情,是血族最高贵的公主;她,善良却屡遭欺负,他闯入了她们的世界,她爱他,想将他占为己有;她爱他,只想默默守候,她们将如何选择?