登陆注册
3274100000005

第5章 趣味故事(4)

1901年6月,英国数学家、哲学家罗素(1872~1970)发现了后人以他的名字命名的“罗素悖论”,这是集合论中的一个悖论,所以又叫“集合悖论”。它的基本内容是:如果把所有集合分为甲、乙两类,甲类可以把自身作为自己的元素,乙类不可以把自身作为自己的元素;那么,所有的乙类集合的集合是甲类还是乙类呢?如果说所有的乙类集合的集合属于甲类,由于甲类可以把自身作为自己的元素,那么乙类集合的集合应属于乙类。如果说所有的乙类集合的集合属于乙类,那么它显然可以纳入所有的乙类集合的集合之中,这样它又符合甲类要求而属于甲类了。由此看来,所有的乙类集合的集合既是甲类又非甲类,既是乙类又非乙类,于是造成了不可克服的逻辑矛盾。1918年,罗素把这个较为高深的集合论中的悖论通俗地解释为前述“理发师悖论”,所以许多文献把这两个悖论相提并论,其本质都是,使逻辑陷入一种无法摆脱的“怪圈”。

那么,“理发师悖论”又怎么会引发危机呢?它的确引出了“危机”——“第三次数学危机”。集合论中存在着不可克服的逻辑矛盾,从根本上危及整个数学体系的确定性和严格性,这怎么不是“危机”呢?

不过,这里有一个很重要的历史背景,就是,为什么这次危机不早不晚,正好在20世纪初即“罗素悖论”提出时就到来了呢?

它似乎是可以早些到来的,因为历史上的数学悖论早已发现且不计其数。例如,古希腊时代欧布利德或古罗马哲学家、政治家西塞罗(公元前106~前43)的“谷堆悖论”,德国哲学家黑格尔的“秃头悖论”,意大利伽利略的“自然数等于完全平方数悖论”,德国数学家施瓦兹(1843~1921)在1880年提出的“施瓦兹悖论”。这些悖论没有能引起“危机”的原因在于,数学家们对自己不够自信,因为类似“悖论”这类问题,在数学中比比皆是,不值得一提。没有引起“危机”的第二个原因在于,其中有的悖论已被“克服”,既已克服,便不存在“危机”。例如古希腊数学家芝诺(约公元前496~前429)提出的四个悖论——其一是众所周知的古希腊神话中善跑的英雄阿基里斯永远追不上乌龟的悖论,在19世纪已经得到解决;有的则未能引起足够的注意。因此在20世纪之前,这一“危机”没有到来。

1874年,德国康托在《克列尔杂志》上发表了《论所有实代数数集合的一个性质》的论文,它标志着集合论的诞生。集合论的创立,颠倒了许多前人的想法,与传统数学观念相冲突,因此一开始就遭到反对者的指责。但在1897年第一次国际数学家大会在瑞士苏黎世召开时,德国数学家赫尔维茨(1859~1919)和法国数学家阿达马(1865~1963)就充分肯定了康托的理论在分析学中的重要地位,最终导致集合论被公认。此外,“皮亚诺算术公理系统”的出现,自然数理论被归结为一组不加定义的概念和几条有关的公理,算术理论公理化了。这样,数学的基础就放在集合论之上了。

这样,在19世纪后半叶,数学家们开始陶醉了:数学基础已牢固无比,数学的严密性已达到。不过,几乎同时,一些事也使数学家们不那么“陶醉”:1897年,意大利数学家布拉利·福蒂(1861~1931)提出了以他名字命名的悖论;1899年,康托也提出“最大基数悖论”和“最大序数悖论”。这些集合论中的悖论也没有得到解决,一些人心中也产生了困惑。

然而,这些并没能阻止人们的自信。1900年在巴黎召开的第二次国际数学家大会上,法国著名数学家、物理学家庞加莱(1854~1912)就宣称:“现在,我们能说(数学)完全的严格性已经到来了。”接着便是前述“罗素悖论”和“第三次数学危机”的出现。

由此可见,“第三次数学危机”是在人们误以为数学基础已经牢固,因而盲目乐观,但接着就遇到无法克服的“悖论”时思想准备不足而必然产生的。

不过,“第三次数学危机”的出现虽然使西方数学界、哲学界、逻辑界产生震惊,但并未使他们方寸大乱。因为人们已经有前两次“危机”的历史“经验”。于是他们为消除这一危机进行了至今仍在继续的努力。但在20世纪前30年是他们投入最多、辩论最激烈的时期,因而许多重大成果相继产生。其中成果之一便是三大数学流派——逻辑主义、直觉主义、形式主义的诞生。

1931年,奥地利数学家哥德尔(1906~1972)发表了《论“数学原理”和有关体系的形式不可判定命题》的论文,给出了两个“不完备定理”,这是“数学和逻辑基础方面伟大的划时代的贡献”。哥德尔第一定理推翻了数学的所有领域能被完全公理化这一强烈的信念;而第二定理则摧毁了沿着希尔伯特等人设想过的路线证明数学内部相容性的全部希望。从此,前述三大数学流派为克服“危机”、寻找可靠数学基础的努力全部化为泡影!于是,数学家们再次陷入困惑,人们在困惑中沿着不完备定理这一指路明灯进入新一轮的思考和探索。

不完备定理表明,任何所谓严密形式体系都不是天衣无缝的,没有哪个重要的部门能保证自己没有内在矛盾,人的智慧源泉不能被完全公理化;新的证明原则等待我们去发现或发明,某些被认可的数学哲学应重新评价,其中有的会被更新或废弃。这种认识论上的飞跃为我们开拓了广阔的视野。

由“悖论”这一“怪圈”引出“危机”,探究克服“危机”完善了三大数学流派,摧毁这些流派的幻想出现哥德尔不完备定理,导致至今尚未完结的探索,这是发生在数学领域里近一个世纪的事。那么,这种“怪圈”仅仅在数学领域内才有吗?

不是,这种“怪圈”普遍存在,在美术和音乐及其他领域都存在这种现象。

1979年,美国数学家道格拉斯·霍夫斯塔特写了一本名为《GEB——一条永恒的金带》的书。书名和内容一样使人好奇,在美国轰动一时,曾获普利策大奖。普利策奖是赴美匈牙利人普利策(1847~1911)创立的,以这位办报人命名的奖虽然每份只有1000美元奖金,但却是新闻界的最高奖赏。上述书名中的“G”指数学家哥德尔(Godel),“E”指画家默里斯·戈罗奈里维斯·埃舍尔(Escher),“B”则指“音乐之父”巴赫(Bach)。

那为什么霍夫斯塔特会把数学家、画家、音乐家绑在一起而使书名中有“GEB”呢?

该书认为,人的思维存在一个“怪圈”,这个“怪圈”会使人的思维在前进过程中不自觉地回到起点上去。正好我们前面谈到的哥德尔不完备定理,这个定理使我们面临二择一的两难境地:要么在逻辑思维中可以是不一致的;要么导致另一个结果,使我们无法用逻辑去证明所有看来是用逻辑提出的问题,这就是不可判定性。哥德尔不完备定理就是指出了数学中的这种“怪圈”。

1961年,埃舍尔画了一幅版画,名为《瀑布》。在画的中部,瀑布倾泻而下,水花溅起,水再经过水槽向下流去,经过三个直角曲折,却流向瀑布口!这真是不可思议:水究竟是往上流,还是往下流?可是在画面上却表现得明明白白。水也像人的思维一样,回到了起点。这就是美术的“怪圈”。

“卡农”是英文canon的音译,是复调音乐写作技法。巴赫曾用卡农技法写成了举世闻名的主题乐曲《音乐的奉献》,并把它献给他当时崇拜的国王——弗里德里希。这首乐曲的奥妙之一在于,它神不知鬼不觉地进行变调,使结尾最后又平滑地过渡到开头。这种首尾相接的变调使听众有一种不断增调的感觉。在转了几圈之后,听众已感到离开原调很远。但奇妙的是,通过这样的变调却又回到原来的调上!这就是音乐中“怪圈”的实例。对此,有人将其称之为“无限升高的卡农”。

此外,英国数学家图灵(1912~1954)在计算机理论中指出,即使可以设想的最有效的计算机,也存在着无法弥补的漏洞,这个与哥德尔不完备定理等价的理论是人工智能和思维的“怪圈”。

人在漆黑的夜晚、迷蒙的雾中、茫茫的风雪中、遮天蔽日的森林中等无法辨别方向的条件下行走,无论起初朝什么方向,其结果都是不断地回到原来的出发点。这是行走时的一种“怪圈”。美国大幽默家马克·吐温在他的《国外旅游记》就记叙了他在旅馆的一个黑暗房间里旅行了整夜的故事。在那天夜里,他在那个房间里转圈47英里(约75公里),仍然没有走出房间。虽然这一故事有夸大其辞之嫌,但人在无法辨别方向时会“转圈”却是不争的事实。

人为什么会转圈呢?这是由于人的左脚走出一步与右脚走出一步的长度不相等的缘故。由于左右脚每步长度不等,所以每走一步便偏离前进方向一点点——“差之毫厘”,许多步积累起来,最终便回到原地——“失之千里”了。有人在威尼斯的马尔克广场上做了这样一次试验。把一些人的眼睛蒙上后,把他们送到广场的一端,叫他们走到对面的教堂去。虽然要走的路仅有175米,但却没有一个人走到宽达84米的教堂前——都走成了弧线,偏到一边碰到旁边的柱子上。挪威生理学家古德贝克在1896年对类似问题作过专题研究,并搜集了这类例子。其中例子之一是,有3个旅行者在宽约4公里的山谷中,企图在黑夜中走出山谷,但走了5次,都回到了原出发点,最后筋疲力尽,只好坐待天明。

在许多旅游景点,都有一个“瞎子摸佛”——蒙上双眼走一段路去摸“佛”字或一座佛像——游戏,但多以失败告终,也是上述道理。

不仅走路如此,划船也如此。古德贝克搜集了一个在浓雾中的小船,在一个4公里宽的海峡兜圈子的例子——人两手划桨时用力不等使船的行进路线偏离,不断偏离便回原地。

不但人有此“怪圈”,许多生物也是这样。北极探险家发现,爱斯基摩狗拉雪橇时如不导引,这只狗会在雪地上转圆圈。把狗的眼蒙上放进水里,它会在水里转圈。瞎眼的鸟在空中会转圈,被击伤的野兽会因恐慌而不自觉地沿曲线逃离,蝌蚪、螃蟹、水母、微生物阿米巴等都会沿曲线运动。

由此可见,“怪圈”是科学、艺术和生物等领域中一个普遍的现象,怪不得霍夫斯塔特将“怪圈”称为“一条永恒的金带”。

从理发师到“悖论”——“怪圈”,使我们清醒地认识人类,认识自己,认识大自然。

从骰子到原子弹

蒙特卡洛是地中海沿岸欧洲国家摩纳哥的一个城市,它以“赌城”闻名于世。那里云集了来自世界各地的赌徒。赌徒们赢了,可以“纸醉金迷”一番;输了,可以到那里的一座“自杀桥”投河自尽——生死都可以“风流”。

蒙特卡洛方法,是数学中的一种方法。那为什么数学方法要用这样一个“不光彩”的城市来命名呢?骰子和原子弹与它又有什么关系呢?

数学有一门叫概率论的分支,而它的起源则是对赌博的研究。而当时欧洲在赌博时常用骰子为赌具,于是我们的故事就从15世纪欧洲用骰子的赌博开始。

意大利数学家帕巧利(1445~1514)最早对赌博中的输赢作了估计。他于1494年发表了数学专著《算术、几何、比和比例摘要》,其中就研究了如下赌博问题。在一次赌博中,两个赌徒都各自要赢6次才算赢。但在一个只赢了5次,另一个只赢了2次时比赛就中断了。问题是:这时应如何分配总的赌金。帕巧利的主张是按5∶2分配。虽然他并没有正确地解答这一问题,但由此却引起了人们的思考。

到了16世纪,另外两位意大利数学家塔尔塔利亚(约1500~1557)和卡尔丹(1501~1576)也研究过类似的赌博问题。卡尔丹还为此写了一本叫《赌博论》的书。书中算出了掷两颗或三颗骰子时,在一切可能的方法中得到某一总点数的方法数;并认为上述问题的答案不是赌过的次数之比5∶2,而是应考虑剩下的次数,即总赌金应按(1+2+3+4)∶1=10∶1来分配——可见他的思路是对的,但计算方法却不对。

16世纪末,欧洲许多国家的保险业从航海扩大到工商业。由于保险业务的扩大和保险对象都带有随机现象的色彩,所以迫使他们研究这样一个问题:既要保证赢利,因此收的保险金不能太少;又要保证投保人乐意投保,因此收的保险金又不能太多。这就需要对保险问题所涉及的随机现象进行研究而创立保险业的一般理论。于是,概率论产生的时机到了。但问题的难点是,保险问题所涉及的随机现象常常被许多错综复杂的因素干扰,因此,人们便从简单的、容易研究的赌博问题入手,于是“骰子”再次摆到数学家们的桌子上。因此,后来有人甚至戏称概率论为“赌博的科学”。

1654年7月29日,是概率论史上一个值得纪念的日子。这一天,法国数学家帕斯卡写信给另一位法国数学家费马研究了赌博问题。由于二人的通信讨论,概率这一概念才比较明确。因此,二人是严格意义下的概论的早期创立者。当然,创立者还应加上荷兰数学家惠更斯,因为他于1657年发表了《论赌博中的推理》。在该文中,他建立了概率和期望等重要概念,并得到相应的性质和计算方法。

同类推荐
  • 星际穿越:那些匪夷所思的宇宙常识

    星际穿越:那些匪夷所思的宇宙常识

    本书将激发普通大众对科学的关注,并为读者的视野和心灵开疆辟土。影响更多人对宇宙的关注,深刻理解宇宙的宏大,人类的宿命,世界的光明与阴暗,多维世界的绚丽与奇幻。另附爱因斯坦、史蒂芬?霍金、薛定谔等著名学者的逸闻趣事,妙趣横生、引人入胜。北京航空航天大学物理学博士严格把关。本书将为你讲述电影《星际穿越》中难懂的宇宙现象,带你走入《诡异而疯狂》的宇宙世界!
  • 海洋:海洋的深潜计划

    海洋:海洋的深潜计划

    我们看到海洋表面平平坦坦,那么海底是不是平的呢?其实海底并不是那么平坦的。长期以来,人们为了探测海洋到底有多深,花费了不少心思。在1920年以前,人们用绳子系上重锤探测海洋的深度。这种古老的方法用来探测浅海还可以,探测深海就不实用了。后来人们学会利用回声探测才对海底有了比较全面的了解。
  • 植物园的大影展(科学知识游览车)

    植物园的大影展(科学知识游览车)

    《植物园的大影展》本书为你讲述关于植物的各种科普知识。本书知识全面、内容精炼、通俗易懂,能够培养读者的科学兴趣和爱好,达到普及科学知识的目的,具有很强的可读性、启发性和知识性,是广大读者了解科技、增长知识、开阔视野、提高素质、激发探索和启迪智慧的良好科普读物。
  • 能源:不仅仅是危机(青少年科学探索·求知·发现丛书)

    能源:不仅仅是危机(青少年科学探索·求知·发现丛书)

    《青少年科学探索·求知·发现丛书:能源:不仅仅是危机》从独特的视角切入,以通俗易懂的语言阐述了太阳能、风能、氢能和可燃冰等各种新能源的基本知识,演绎了能源的发展史。书中主要介绍了国内外新能源与可再生资源的发展状况,并对新能源与可再生资源的资源状况、利用原理与技术做了介绍。
  • 探索太阳系

    探索太阳系

    人类是宇宙演化的杰作,宇宙是神秘莫测的存在。从伴我们昼夜运行的太阳、月亮到对于我们来说浩瀚无比的太阳系,人类从未停止宇宙探索的步伐。太阳系是以太阳为中心,和所有受到太阳的引力约束天体的集合体。本书为读者介绍了太阳和月球的基本构成和形成规律,分别介绍了太阳系中八大行星的基本情况,太阳系的形成和各大行星的运行轨迹,以及人类对于火星的探索等。
热门推荐
  • 墨姝传

    墨姝传

    新书《富贵锦绣》已上传,请大家多多支持一场突如其来的大火,不仅将栖霞村化为灰烬,更是夺走了墨儿唯一的亲人。她攥紧拳头,暗暗发誓:你们欠我的,我会加倍地讨回来的!且看她如何搅弄风云,快意人生!
  • 释然的修行

    释然的修行

    释然是个刚刚经过了成人礼的小和尚,对他来说,佛法和尘世全部一股脑儿摆在了尚未准备充足的自己面前。于是,烦恼氆就接踵而至。
  • 金陵望汉江

    金陵望汉江

    本书为公版书,为不受著作权法限制的作家、艺术家及其它人士发布的作品,供广大读者阅读交流。汇聚授权电子版权。
  • 匠心之四艺堂

    匠心之四艺堂

    中国元代建立匠户制度,传承发展历经千年,父死子继,役皆永充,世代为皇家制作私密之物,木雕、制香、花灯、幻术四大传统手工艺世家聚集荥州,以家族传承延续技艺,并极力隐藏匠户世代不容于纸,口耳相传的秘密。民国时期,正值万国博览会,政府下达军令状,要求四大匠户家族拿出足以震惊各国的展品,四大匠户家族联合成立“四艺堂”,由幻术家出具创意,四家商定,参展作品为微缩化的阿旁宫建筑群。作品参展后惊叹四方,四艺堂的名气也盛极一时。万国博览会结束后,四家再次消声于世人面前。直到幻术家族族长突然离世,祖传戏法“吐火穿心”失传。传承人傅嘉年留洋归来,心痛不已,怀着复兴传统的理想,希望联合四家继承人重建“四艺堂”。
  • 王者荣耀之国服无双

    王者荣耀之国服无双

    游戏巨坑莫颜,在一场游戏过后,获得了可以提升游戏实力的系统。国服实力的猴子,solo无敌。提升过后的露娜,carry全场。从此打打直播,参与参与比赛,依靠着王者荣耀走上了人生巅峰。
  • 武极宗师

    武极宗师

    当今时代,武道崛起。一个平民,得到神秘的属性异能,平凡庸碌的人生就此改变,向着浩瀚星空,一步步前行。“我叫方成,我大器不晚成!”全订VIP群:639211398书友读者群:648932628【新书《君临星空》已发,求支持~】
  • 明伦汇编宫闱典东宫妃嫔部

    明伦汇编宫闱典东宫妃嫔部

    本书为公版书,为不受著作权法限制的作家、艺术家及其它人士发布的作品,供广大读者阅读交流。汇聚授权电子版权。
  • 鬼公主的秘密

    鬼公主的秘密

    “你是谁?!”他看着眼前的物体。想他盗墓无数,见过的市面可多了,死人更是不必说了!高的矮的胖的瘦的男的女的有钱的没钱的有头的没头的多了去了,但是,这样的还真的没有见过!难道这是皇家的新的避暑招数?将人养在坟墓里?金龙皇朝还没有穷到这个地步吧?!她本应是金龙皇朝一人之上万人之下的长公主,但是因为恶人的阴谋让她十几年来一直过着不见天日的幽暗生活,从来都没有想到要出去玩!没想到,这个从小洞里面钻出来的男人虽然身上脏兮兮的,还对着她咧嘴,而他却说那是‘笑’,这个人真的好好,和她说了很多话;但是他也挺胆小的,看见自己飘在空中竟然大叫一声就跑出去了。她要不要跟着他一块儿出去玩一玩呢?看起来很好玩的样子。
  • 陌生的朋友

    陌生的朋友

    本书收录的作品主要包括:陌生的朋友、抠字眼的小女孩、顺手帮一把、千年古参、上边有人、考验爱情、我的群主,我的“群”、你追我涨、年度最佳慈善家、笔记本上的秘密等。
  • 步步倾心:逆天小萌妃

    步步倾心:逆天小萌妃

    【女强,轻松文】她,21世纪的特种人员,拥有异于常人的超能力,万事万物皆在她掌握之内。他,千年前的冷血王爷,身怀无人能及的绝世魔功,国仇家恨剪不断理还乱。在一次特殊的任务中,她跨越千年与他狭路相逢,从此命运被改写,先后卷进阴谋重重的宫延纷争和疑团甚深的江湖仇杀之内。面对无情的杀戮与斗争,她手握长剑,喋血奋战,越战越强,在人狼混居的古代,闯出一番丰功伟业,绽放最野性迷人的姿态。