It may well be doubted whether any joy experienced by mortals is more genuine than that which rewards the successful searcher after natural truths. Every science-worker, be his efforts ever so humble, will be able to sympathise with the enthusiastic delight of Kepler when at last, after years of toil, the glorious light broke forth, and that which he considered to be the greatest of his astonishing laws first dawned upon him. Kepler rightly judged that the number of days which a planet required to perform its voyage round the sun must be connected in some manner with the distance from the planet to the sun; that is to say, with the radius of the planet's orbit, inasmuch as we may for our present object regard the planet's orbit as circular.
Here, again, in his search for the unknown law, Kepler had no accurate dynamical principles to guide his steps. Of course, we now know not only what the connection between the planet's distance and the planet's periodic time actually is, but we also know that it is a necessary consequence of the law of universal gravitation. Kepler, it is true, was not without certain surmises on the subject, but they were of the most fanciful description. His notions of the planets, accurate as they were in certain important respects, were mixed up with vague ideas as to the properties of metals and the geometrical relations of the regular solids. Above all, his reasoning was penetrated by the supposed astrological influences of the stars and their significant relation to human fate. Under the influence of such a farrago of notions, Kepler resolved to make all sorts of trials in his search for the connection between the distance of a planet from the sun and the time in which the revolution of that planet was accomplished.
It was quite easily demonstrated that the greater the distance of the planet from the sun the longer was the time required for its journey. It might have been thought that the time would be directly proportional to the distance. It was, however, easy to show that this supposition did not agree with the fact. Finding that this simple relation would not do, Kepler undertook a vast series of calculations to find out the true method of expressing the connection. At last, after many vain attempts, he found, to his indescribable joy, that the square of the time in which a planet revolves around the sun was proportional to the cube of the average distance of the planet from that body.
The extraordinary way in which Kepler's views on celestial matters were associated with the wildest speculations, is well illustrated in the work in which he propounded his splendid discovery just referred to. The announcement of the law connecting the distances of the planets from the sun with their periodic times, was then mixed up with a preposterous conception about the properties of the different planets. They were supposed to be associated with some profound music of the spheres inaudible to human ears, and performed only for the benefit of that being whose soul formed the animating spirit of the sun.
Kepler was also the first astronomer who ever ventured to predict the occurrence of that remarkable phenomenon, the transit of a planet in front of the sun's disc. He published, in 1629, a notice to the curious in things celestial, in which he announced that both of the planets, Mercury and Venus, were to make a transit across the sun on specified days in the winter of 1631. The transit of Mercury was duly observed by Gassendi, and the transit of Venus also took place, though, as we now know, the circumstances were such that it was not possible for the phenomenon to be witnessed by any European astronomer.
In addition to Kepler's discoveries already mentioned, with which his name will be for ever associated, his claim on the gratitude of astronomers chiefly depends on the publication of his famous Rudolphine tables. In this remarkable work means are provided for finding the places of the planets with far greater accuracy than had previously been attainable.
Kepler, it must be always remembered, was not an astronomical observer. It was his function to deal with the observations made by Tycho, and, from close study and comparison of the results, to work out the movements of the heavenly bodies. It was, in fact, Tycho who provided as it were the raw material, while it was the genius of Kepler which wrought that material into a beautiful and serviceable form. For more than a century the Rudolphine tables were regarded as a standard astronomical work. In these days we are accustomed to find the movements of the heavenly bodies set forth with all desirable exactitude in the NAUTICAL ALMANACK, and the similar publication issued by foreign Governments. Let it be remembered that it was Kepler who first imparted the proper impulse in this direction.
[PLATE: THE COMMEMORATION OF THE RUDOLPHINE TABLES.]