Unity and convertibility of natural forces: theory of the electric current.
The terms unity and convertibility, as applied to natural forces, are often employed in these investigations, many profound and beautiful thoughts respecting these subjects being expressed in Faraday's memoirs. Modern inquiry has, however, much augmented our knowledge of the relationship of natural forces, and it seems worth while to say a few words here, tending to clear up certain misconceptions which appear to exist among philosophic writers regarding this relationship.
The whole stock of energy or working-power in the world consists of attractions, repulsions, and motions. If the attractions and repulsions are so circumstanced as to be able to produce motion, they are sources of working-power, but not otherwise. Let us for the sake of simplicity confine our attention to the case of attraction. The attraction exerted between the earth and a body at a distance from the earth's surface is a source of working-power; because the body can be moved by the attraction, and in falling to the earth can perform work. When it rests upon the earth's surface it is not a source of power or energy, because it can fall no further. But though it has ceased to be a source of energy, the attraction of gravity still acts as a force, which holds the earth and weight together.
The same remarks apply to attracting atoms and molecules. As long as distance separates them, they can move across it in obedience to the attraction, and the motion thus produced may, by proper appliances, be caused to perform mechanical work. When, for example, two atoms of hydrogen unite with one of oxygen, to form water the atoms are first drawn towards each other--they move, they clash, and then by virtue of their resiliency, they recoil and quiver. To this quivering motion we give the name of heat. Now this quivering motion is merely the redistribution of the motion produced by the chemical affinity; and this is the only sense in which chemical affinity can be said to be converted into heat. We must not imagine the chemical attraction destroyed, or converted into anything else.
For the atoms, when mutually clasped to form a molecule of water, are held together by the very attraction which first drew them towards each other. That which has really been expended is the pull exerted through the space by which the distance between the atoms has been diminished.
If this be understood, it will be at once seen that gravity may in this sense be said to be convertible into heat; that it is in reality no more an outstanding and inconvertible agent, as it is sometimes stated to be, than chemical affinity. By the exertion of a certain pull, through a certain space, a body is caused to clash with a certain definite velocity against the earth. Heat is thereby developed, and this is the only sense in which gravity can be said to be converted into heat. In no case is the force which produces the motion annihilated or changed into anything else. The mutual attraction of the earth and weight exists when they are in contact as when they were separate; but the ability of that attraction to employ itself in the production of motion does not exist.
The transformation, in this case, is easily followed by the mind's eye. First, the weight as a whole is set in motion by the attraction of gravity. This motion of the mass is arrested by collision with the earth; being broken up into molecular tremors, to which we give the name of heat.
And when we reverse the process, and employ those tremors of heat to raise a weight, as is done through the intermediation of an elastic fluid in the steam-engine, a certain definite portion of the molecular motion is destroyed in raising the weight. In this sense, and this sense only, can the heat be said to be converted into gravity, or more correctly, into potential energy of gravity. It is not that the destruction of the heat has created any new attraction, but simply that the old attraction has now a power conferred upon it, of exerting a certain definite pull in the interval between the starting-point of the falling weight and its collision with the earth.
So also as regards magnetic attraction: when a sphere of iron placed at some distance from a magnet rushes towards the magnet, and has its motion stopped by collision, an effect mechanically the same as that produced by the attraction of gravity occurs. The magnetic attraction generates the motion of the mass, and the stoppage of that motion produces heat. In this sense, and in this sense only, is there a transformation of magnetic work into heat. And if by the mechanical action of heat, brought to bear by means of a suitable machine, the sphere be torn from the magnet and again placed at a distance, a power of exerting a pull through that distance, and producing a new motion of the sphere, is thereby conferred upon the magnet; in this sense, and in this sense only, is the heat converted into magnetic potential energy.
When, therefore, writers on the conservation of energy speak of tensions being 'consumed' and 'generated,' they do not mean thereby that old attractions have been annihilated and new ones brought into existence, but that, in the one case, the power of the attraction to produce motion has been diminished by the shortening of the distance between the attracting bodies, and that in the other case the power of producing motion has been augmented by the increase of the distance. These remarks apply to all bodies, whether they be sensible masses or molecules.