登陆注册
5144300000030

第30章

First let the luminous body be appearing on the horizon at the point H, and let KM be reflected to H, and let the plane in which A is, determined by the triangle HKM, be produced. Then the section of the sphere will be a great circle. Let it be A (for it makes no difference which of the planes passing through the line HK and determined by the triangle KMH is produced). Now the lines drawn from H and K to a point on the semicircle A are in a certain ratio to one another, and no lines drawn from the same points to another point on that semicircle can have the same ratio. For since both the points H and K and the line KH are given, the line MH will be given too;consequently the ratio of the line MH to the line MK will be given too. So M will touch a given circumference. Let this be NM. Then the intersection of the circumferences is given, and the same ratio cannot hold between lines in the same plane drawn from the same points to any other circumference but MN.

Draw a line DB outside of the figure and divide it so that D:B=MH:MK. But MH is greater than MK since the reflection of the cone is over the greater angle (for it subtends the greater angle of the triangle KMH). Therefore D is greater than B. Then add to B a line Z such that B+Z:D=D:B. Then make another line having the same ratio to B as KH has to Z, and join MI.

Then I is the pole of the circle on which the lines from K fall. For the ratio of D to IM is the same as that of Z to KH and of B to KI. If not, let D be in the same ratio to a line indifferently lesser or greater than IM, and let this line be IP. Then HK and KI and IP will have the same ratios to one another as Z, B, and D. But the ratios between Z, B, and D were such that Z+B:D=D: B. Therefore IH:IP=IP:IK. Now, if the points K, H be joined with the point P by the lines HP, KP, these lines will be to one another as IH is to IP, for the sides of the triangles HIP, KPI about the angle I are homologous. Therefore, HP too will be to KP as HI is to IP. But this is also the ratio of MH to MK, for the ratio both of HI to IP and of MH to MK is the same as that of D to B. Therefore, from the points H, K there will have been drawn lines with the same ratio to one another, not only to the circumference MN but to another point as well, which is impossible. Since then D cannot bear that ratio to any line either lesser or greater than IM (the proof being in either case the same), it follows that it must stand in that ratio to MIitself. Therefore as MI is to IK so IH will be to MI and finally MH to MK.

If, then, a circle be described with I as pole at the distance MI it will touch all the angles which the lines from H and K make by their reflection. If not, it can be shown, as before, that lines drawn to different points in the semicircle will have the same ratio to one another, which was impossible. If, then, the semicircle A be revolved about the diameter HKI, the lines reflected from the points H, K at the point M will have the same ratio, and will make the angle KMH equal, in every plane. Further, the angle which HM and MImake with HI will always be the same. So there are a number of triangles on HI and KI equal to the triangles HMI and KMI. Their perpendiculars will fall on HI at the same point and will be equal.

Let O be the point on which they fall. Then O is the centre of the circle, half of which, MN, is cut off by the horizon. (See diagram.)Next let the horizon be ABG but let H have risen above the horizon. Let the axis now be HI. The proof will be the same for the rest as before, but the pole I of the circle will be below the horizon AG since the point H has risen above the horizon. But the pole, and the centre of the circle, and the centre of that circle (namely HI)which now determines the position of the sun are on the same line. But since KH lies above the diameter AG, the centre will be at O on the line KI below the plane of the circle AG determined the position of the sun before. So the segment YX which is above the horizon will be less than a semicircle. For YXM was a semicircle and it has now been cut off by the horizon AG. So part of it, YM, will be invisible when the sun has risen above the horizon, and the segment visible will be smallest when the sun is on the meridian; for the higher H is the lower the pole and the centre of the circle will be.

同类推荐
  • 凤仙谱

    凤仙谱

    本书为公版书,为不受著作权法限制的作家、艺术家及其它人士发布的作品,供广大读者阅读交流。汇聚授权电子版权。
  • The Moscow Census

    The Moscow Census

    本书为公版书,为不受著作权法限制的作家、艺术家及其它人士发布的作品,供广大读者阅读交流。汇聚授权电子版权。
  • The Moon and Sixpence

    The Moon and Sixpence

    本书为公版书,为不受著作权法限制的作家、艺术家及其它人士发布的作品,供广大读者阅读交流。汇聚授权电子版权。
  • CLOTELLE

    CLOTELLE

    本书为公版书,为不受著作权法限制的作家、艺术家及其它人士发布的作品,供广大读者阅读交流。汇聚授权电子版权。
  • 重订囊秘喉书

    重订囊秘喉书

    本书为公版书,为不受著作权法限制的作家、艺术家及其它人士发布的作品,供广大读者阅读交流。汇聚授权电子版权。
热门推荐
  • 棋魂之青梅竹马

    棋魂之青梅竹马

    十二岁的进藤光在爷爷家的仓库里探宝,找到了一个带血的棋盘。从此之后,一个俊美的千年幽魂佐为就跟着她了……从此,拜名师,交好友,打败一个又一个难对付的对手,帮助佐为重回人间,加速塔矢亮成长,助和谷伊角等好友成才……新书独宠盛世明珠开始了,古言种田奇幻文
  • 宇宙制造者

    宇宙制造者

    叶勐,河北省作协会员。作品见于《人民文学》《芙蓉》等期刊。小说《老正是条狗》入选《2005年短篇小说年选》。《亡命之徒》电影改编。《塞车》被译成英文。《为什么要把小说写得这么好》获2008年度河北十佳优秀作品奖。现为河北省文学院签约作家。
  • 恨君不似江楼月

    恨君不似江楼月

    对庄明月来说,爱情就是一个传说中的杯具。思感游戏里,他们相逢在一片桃花林,从此相互扶持一路。然而,他却不动任何声色的娶了别人。现实生活中,她习惯了追随他的脚步,然而老天实在是太爱开玩笑,没等她伸出那双友好的手,他就有了女朋友。这些还不算什么,最最杯具的是,前两句话中的男主角是两个人,小三……是一个人!这可不可以称作是明朝景德镇官窑出产的青花瓷杯具呢?
  • 世界著名教育思想家:杜威

    世界著名教育思想家:杜威

    丁永为编著的《杜威》试图在一个历史的、发生学的视野中,观察杜威对现代教育的思考和参与的全部过程,以期使大家更准确地把握杜威教育思想。但同时并不打算“事无巨细““包罗万象”地把杜威对现代教育的探究和实践的所有文章和事件都呈现给大家,而是试图选择每个时期最有代表性的、最能体现此时期思想特征的文献和事件进行挖掘、比较、概括和综合。
  • 洪水防范与自救

    洪水防范与自救

    从洪涝灾害的基本知识、洪涝灾害的预防、洪涝灾害时的自救互教三个方面进行介绍,记录了读者最需要、也最应该知道的技巧,做好最充分的准备,将灾害带来的损失减到最低。
  • 竹马总裁:倔强娇妻会成瘾

    竹马总裁:倔强娇妻会成瘾

    曾经的竹马初恋,如今是金光闪闪的大总裁!历经渣男的苏荷发现,原来一切还可以回到原点……“喂,那边的宠妻狂魔,请控制一下你纸己!”--情节虚构,请勿模仿
  • 古墓大冒险(科学大探险)

    古墓大冒险(科学大探险)

    乐乐淘是一个爱冒险的小男孩,他与好朋友小猴一起在一片阴森恐怖的大森林里,开始了新的冒险之旅。森林中是否有女鬼,又是否真的有一座古墓?他们决定去一探究竟。故事中,乐乐淘随身携带的背包可以从中取出任何想要的东西,解决在旅途中遇到的问题;而飞毯的神奇之处在于它可以根据需要变化,可以变成雪橇、潜艇、轮船等等。在刘书畅编写的《古墓大冒险》这个故事中,所有的动物都是拟人化的,它们像人类一样生动、可爱。《古墓大冒险》这本书通过乐乐淘、小猴冒险途中的所见所闻,为我们介绍了悬棺,金刚墙,古墓迷影、奇异壁画……
  • X银行抢劫案

    X银行抢劫案

    这里历史与现实交织,阴谋与陷阱为伍,忠诚与背叛同存,庄严与荒唐杂糅,文革中的一起银行抢劫案,镜子一样映视出一部分国人灰鼠样的嘴脸与灵魂。无耻的忘却召唤着信仰重建与灵魂再塑的迫切与必要。多棱镜样的透视不仅仅是写作的技法,更是对当代人灵魂的一次次拷问与鞭挞。
  • 劝发诸王要偈

    劝发诸王要偈

    本书为公版书,为不受著作权法限制的作家、艺术家及其它人士发布的作品,供广大读者阅读交流。汇聚授权电子版权。
  • 快穿之这个王爷不稀罕

    快穿之这个王爷不稀罕

    她叫楚离,三线城市的一个上班族。不过就睡个午觉,竟然穿越了?什么?这设定还是个庶出,得嘞,指定是那种爹不疼娘不爱的角色。可楚离没想到,她穿越的这个人家好像有点不对劲,大姐待她好,哥哥待她好。即便做个陪嫁丫头,也是落得个清静自在,未曾吃过苦头。剧情……有点崩啊?等到她家的那个王爷注意到她的时候,哎呦,楚离脚底抹油,开溜了,谁说她这辈子要老死在府上的!某日,王爷似乎是想起来东苑的那个侧妃,忙唤来下人。“她叫什么来着?”“楚姑娘。”“就让她今晚上来侍寝吧。”下人低着头,瑟瑟发抖,“回王爷,那位妃,她跑了啊。”