登陆注册
5200500000005

第5章

This being clear, we must go on to consider the questions which remain.First, is there an infinite body, as the majority of the ancient philosophers thought, or is this an impossibility? The decision of this question, either way, is not unimportant, but rather all-important, to our search for the truth.It is this problem which has practically always been the source of the differences of those who have written about nature as a whole.So it has been and so it must be; since the least initial deviation from the truth is multiplied later a thousandfold.Admit, for instance, the existence of a minimum magnitude, and you will find that the minimum which you have introduced, small as it is, causes the greatest truths of mathematics to totter.The reason is that a principle is great rather in power than in extent; hence that which was small at the start turns out a giant at the end.Now the conception of the infinite possesses this power of principles, and indeed in the sphere of quantity possesses it in a higher degree than any other conception; so that it is in no way absurd or unreasonable that the assumption that an infinite body exists should be of peculiar moment to our inquiry.The infinite, then, we must now discuss, opening the whole matter from the beginning.

Every body is necessarily to be classed either as simple or as composite; the infinite body, therefore, will be either simple or composite.

But it is clear, further, that if the simple bodies are finite, the composite must also be finite, since that which is composed of bodies finite both in number and in magnitude is itself finite in respect of number and magnitude: its quantity is in fact the same as that of the bodies which compose it.What remains for us to consider, then, is whether any of the simple bodies can be infinite in magnitude, or whether this is impossible.Let us try the primary body first, and then go on to consider the others.

The body which moves in a circle must necessarily be finite in every respect, for the following reasons.(1) If the body so moving is infinite, the radii drawn from the centre will be infinite.But the space between infinite radii is infinite: and by the space between the radii I mean the area outside which no magnitude which is in contact with the two lines can be conceived as falling.This, I say, will be infinite: first, because in the case of finite radii it is always finite; and secondly, because in it one can always go on to a width greater than any given width; thus the reasoning which forces us to believe in infinite number, because there is no maximum, applies also to the space between the radii.Now the infinite cannot be traversed, and if the body is infinite the interval between the radii is necessarily infinite: circular motion therefore is an impossibility.Yet our eyes tell us that the heavens revolve in a circle, and by argument also we have determined that there is something to which circular movement belongs.

(2) Again, if from a finite time a finite time be subtracted, what remains must be finite and have a beginning.And if the time of a journey has a beginning, there must be a beginning also of the movement, and consequently also of the distance traversed.This applies universally.Take a line, ACE, infinite in one direction, E, and another line, BB, infinite in both directions.Let ACE describe a circle, revolving upon C as centre.In its movement it will cut BB

同类推荐
  • 养一斋李杜诗话

    养一斋李杜诗话

    本书为公版书,为不受著作权法限制的作家、艺术家及其它人士发布的作品,供广大读者阅读交流。汇聚授权电子版权。
  • 招远县志

    招远县志

    本书为公版书,为不受著作权法限制的作家、艺术家及其它人士发布的作品,供广大读者阅读交流。汇聚授权电子版权。
  • 客座偶谈

    客座偶谈

    本书为公版书,为不受著作权法限制的作家、艺术家及其它人士发布的作品,供广大读者阅读交流。汇聚授权电子版权。
  • 禅家龟鉴

    禅家龟鉴

    本书为公版书,为不受著作权法限制的作家、艺术家及其它人士发布的作品,供广大读者阅读交流。汇聚授权电子版权。
  • Sunshine Sketches of a Little Town

    Sunshine Sketches of a Little Town

    本书为公版书,为不受著作权法限制的作家、艺术家及其它人士发布的作品,供广大读者阅读交流。汇聚授权电子版权。
热门推荐
  • 颜元集

    颜元集

    本书为公版书,为不受著作权法限制的作家、艺术家及其它人士发布的作品,供广大读者阅读交流。汇聚授权电子版权。
  • 皇夫吃醋超难哄

    皇夫吃醋超难哄

    傲娇本娇仙女本仙的小公主姬幽梦,本着联姻之计要被皇室嫁给南国王世子,有些人就不乐意了。“我看上的女人还能跟别人拜堂?”于是公主惊了,有些人表面小狼狗做派,背地里却是呼风唤雨的摄政王?!【皇夫恋爱日常】她:我要你亲自下厨!他:好。她:我要吸猫,你的猫抱来!他:好。她:我要当皇帝!他:好。他便手把手教她玩弄权术,下江南出天山,扫清宿敌杀伐决断,以血研墨为她铺开江山版图。奈何公主如此多娇,引无数美男竞折腰,媳妇总被人惦记,这就让摄政王很不开心。终于,一手养成的小公主升级女王大人。有人问起摄政王最大的心愿,他说当然是和女帝生个像他一样颜值逆天双商爆表的儿子继承皇位,他便可与她退居幕后,她负责闹,他负责笑,花前月下逗猫猫,(点开看全)然而真相是…“陛下,摄政王殿外请求发糖!”“告诉王爷,朕要以国事为重”皇夫冷面走入:“先学会治理后宫,再学治国。”她考虑一下:“嗯,有道理。”【高甜;女尊向;黑莲花女主;双男主;宫斗权谋】提醒一下:楔子部分是倒叙,正文从“第一章”开始,楔子内容不是最终结局,后面会有反转!
  • 我在等你却不知

    我在等你却不知

    去机场接人,结果“撞”了人,别人碰瓷也就算了,这货死活要以身相许是什么情况?无奈领回家,结果。。。。这货能别撩我了么?还谎话连篇。当冷酷女总裁遇上邪肆男痞子,会擦出怎样的火花呢?痞子身份的背后,又有怎样惊天身份?!
  • 早知道,早健康

    早知道,早健康

    本书按照人体的生理结构把人体划分为头部、躯干、四肢、皮肤,针对各个部位出现异常时可能是哪种疾病在“作怪”做了全面的解说,并且提示人们不可忽视精神疾病。另外,针对性别不同,本书对妇科疾病和男科疾病的预防也做了详细的解说;对抵抗力比较差的老人和儿童常见的症状也分别给出了相应的对策。
  • 大宋江山(第二卷):陈桥双辉

    大宋江山(第二卷):陈桥双辉

    本卷从宋太祖赵匡胤陈桥兵变开始,书写大宋立国的艰难历程。全书描写了赵匡胤和赵普等策划发动兵变,赵匡胤黄袍加身,被拥立为皇帝,登基后又杯酒释兵权,定下重文抑武的国策。故事以赵匡胤登基开始,以赵匡胤在赵光义的明剑暗伤中谢幕为结束,帝王的命运似乎是一个解不开的死循环,呈现出历史大势与生命悲剧的纠缠一幕。
  • 杨红樱教育观漫谈

    杨红樱教育观漫谈

    《杨红樱教育观漫谈》杨红樱的文学作品是滋养孩子心灵成长的精神食粮,更是蕴含丰富教育思想的教育指南。秉承苏霍姆林斯基先进的教育理念,杨红樱反对格式化教育,尊重孩子的个性,主张把快乐还给孩子,用情感温暖成长,以博识推动发展,倡导充满人性关怀和游戏精神的生命教育。解读杨红樱畅销书作中的教育智慧,自当会引发我们对儿童教育更为深入的思考和更加积极的行动。
  • 佛说诸佛经

    佛说诸佛经

    本书为公版书,为不受著作权法限制的作家、艺术家及其它人士发布的作品,供广大读者阅读交流。汇聚授权电子版权。
  • 恰似那年卿有意

    恰似那年卿有意

    堕天志有载,北泽千家楼,南苍九命殿,西邛一步登天梯,东烬望天楼上望天求,大荒解语阁中解天下,孑孑神陵空守神陵此间界中无神留!——堕天大陆,四万四千四百四十四年。
  • 网游之魔神领主

    网游之魔神领主

    生死轮回,唯有情在。临死方知生,患难才温情。一个身患绝症的人的最后挣扎!感谢阅文书评团提供书评支持!
  • 受难与复活:耶稣的故事

    受难与复活:耶稣的故事

    这是一本了解耶稣和基督教知识的理想读本。《受难与复活:耶稣的故事》以故事形式讲述基督教创始人耶稣的生平事迹和心路历程,主要包括耶稣的诞生与少年时代,耶稣的传道生涯,耶稣的受难与复活三方面内容,完整再现了耶酥极富传奇色彩的一生。