登陆注册
5200500000005

第5章

This being clear, we must go on to consider the questions which remain.First, is there an infinite body, as the majority of the ancient philosophers thought, or is this an impossibility? The decision of this question, either way, is not unimportant, but rather all-important, to our search for the truth.It is this problem which has practically always been the source of the differences of those who have written about nature as a whole.So it has been and so it must be; since the least initial deviation from the truth is multiplied later a thousandfold.Admit, for instance, the existence of a minimum magnitude, and you will find that the minimum which you have introduced, small as it is, causes the greatest truths of mathematics to totter.The reason is that a principle is great rather in power than in extent; hence that which was small at the start turns out a giant at the end.Now the conception of the infinite possesses this power of principles, and indeed in the sphere of quantity possesses it in a higher degree than any other conception; so that it is in no way absurd or unreasonable that the assumption that an infinite body exists should be of peculiar moment to our inquiry.The infinite, then, we must now discuss, opening the whole matter from the beginning.

Every body is necessarily to be classed either as simple or as composite; the infinite body, therefore, will be either simple or composite.

But it is clear, further, that if the simple bodies are finite, the composite must also be finite, since that which is composed of bodies finite both in number and in magnitude is itself finite in respect of number and magnitude: its quantity is in fact the same as that of the bodies which compose it.What remains for us to consider, then, is whether any of the simple bodies can be infinite in magnitude, or whether this is impossible.Let us try the primary body first, and then go on to consider the others.

The body which moves in a circle must necessarily be finite in every respect, for the following reasons.(1) If the body so moving is infinite, the radii drawn from the centre will be infinite.But the space between infinite radii is infinite: and by the space between the radii I mean the area outside which no magnitude which is in contact with the two lines can be conceived as falling.This, I say, will be infinite: first, because in the case of finite radii it is always finite; and secondly, because in it one can always go on to a width greater than any given width; thus the reasoning which forces us to believe in infinite number, because there is no maximum, applies also to the space between the radii.Now the infinite cannot be traversed, and if the body is infinite the interval between the radii is necessarily infinite: circular motion therefore is an impossibility.Yet our eyes tell us that the heavens revolve in a circle, and by argument also we have determined that there is something to which circular movement belongs.

(2) Again, if from a finite time a finite time be subtracted, what remains must be finite and have a beginning.And if the time of a journey has a beginning, there must be a beginning also of the movement, and consequently also of the distance traversed.This applies universally.Take a line, ACE, infinite in one direction, E, and another line, BB, infinite in both directions.Let ACE describe a circle, revolving upon C as centre.In its movement it will cut BB

同类推荐
  • 春过赵墟

    春过赵墟

    本书为公版书,为不受著作权法限制的作家、艺术家及其它人士发布的作品,供广大读者阅读交流。汇聚授权电子版权。
  • 明伦汇编家范典奴婢部

    明伦汇编家范典奴婢部

    本书为公版书,为不受著作权法限制的作家、艺术家及其它人士发布的作品,供广大读者阅读交流。汇聚授权电子版权。
  • 名臣碑传琬琰集

    名臣碑传琬琰集

    本书为公版书,为不受著作权法限制的作家、艺术家及其它人士发布的作品,供广大读者阅读交流。汇聚授权电子版权。
  • 送张侍御赴郴州别驾

    送张侍御赴郴州别驾

    本书为公版书,为不受著作权法限制的作家、艺术家及其它人士发布的作品,供广大读者阅读交流。汇聚授权电子版权。
  • 兰室秘藏

    兰室秘藏

    本书为公版书,为不受著作权法限制的作家、艺术家及其它人士发布的作品,供广大读者阅读交流。汇聚授权电子版权。
热门推荐
  • 魂归山林

    魂归山林

    江琼和简洁是大学同学。江琼毕业后,便嫁给了金融界的才俊李肯,婚后生有一女琳达。而近三十岁的简洁虽为富商之女,但仍孑然一身,自小失去母亲的心理阴影,让她对婚姻望而却步,进而产生消极避世的思想,隐居山林,欲寻找多年来困扰于内心的母亲生死之谜。 经过一次次的艰险探求和匪夷所思的奇异经历,一场罕见的爱情终于展现在众人的面前......
  • 用故事培养孩子好习惯

    用故事培养孩子好习惯

    《用故事培养孩子好习惯》精心选择了一些有助于孩子养成良好习惯的故事,这些故事有些流传了很久,有些则是在海内外广泛流传,它们犹如一面的镜子,让你的孩子能很容易地看到自身的坏习惯,并逐渐养成良好的习惯。不要小看这些故事,它们可能是我们小时候。甚至是我们的父母那一辈小时候就听过的故事。衷心希望这《用故事培养孩子好习惯》,能帮助家长更好地培养孩子的良好习惯,让他们乘着良好习惯这艘帆船,乘风破浪,顺利地到达成功的彼岸!
  • 我的手机连仙界

    我的手机连仙界

    一部来自仙界的手机,给于小五带来了一个崭新的人生,跟历史名人称兄道弟,与当代美女拉帮结伙;他是大明星,他是当代奇人,他是执掌仙界生死的神秘人物,这一切来得都太过神奇。打架,他有武林绝学,仙界神力;泡妞,他靠的是实力;不日登入仙界,他却带着强大的妖力,登峰造极。
  • 在迷茫的时候做个明白人

    在迷茫的时候做个明白人

    想要获得良好的发展和更多的财富,只有先了解、摸清楚自己更加擅长什么,把自己的位置摆正,时刻保持清醒,就能在自己喜欢并擅长的领域里打拼出自己的一片天地。正视自己,不要相信别人说你适合什么,别人不是你肚子里的蛔虫,永远不能明白你到底擅长什么领域。每个人对于自己的认知、定位、主观的发挥、自我的实现都有自己的考量和思索。我们要做的就是帮助他们正确地定位自己,并在此后获得更好的发展和更从容的人生。
  • 坏小孩(秦昊、王景春《隐秘的角落》原著)

    坏小孩(秦昊、王景春《隐秘的角落》原著)

    秦昊、王景春主演网剧《隐秘的角落》原著, 多重伏笔,结局神逆转!“推理之王”紫金陈第2部!鹦鹉史航、马伯庸墙裂推荐!上门女婿隐忍数年,出轨人妻不幸全家丧命。这场精心谋划的连环杀人案,却被几个在远处玩耍的小孩无意中拍下。更让凶手没想到的是,这几个孩子却把他给设计了。自小父母离异,一直品学兼优,可父亲的新家庭却容不下他。面对亲人的遗弃,仇恨的种子在心中渐渐发芽……一连串停不下来的杀人计划,一场步步为营的惊人骗局,一个十四岁的孩子,如何拥有颠倒黑白的大逆转能力?又如何将友谊、亲情与爱情狠狠踩在脚下?超乎常人想象的“演技”和精心设计的完美诡计,他做了这么多,却只想拥有一个可以重新开始的明天。却没料到,忽略了一个人……
  • 钢轨

    钢轨

    随风潜入夜,润物细无声。夜里一场淅沥小雨,稻田一碧如洗。挂满露珠的稻叶像锡箔打制的,翻转着初晨纯净的阳光,露珠让整个田野珠光宝气。经过一夜的过滤,空气十分的甘冽,携裹着稻谷的馨香,清醇扑人。鸟儿们卖弄着亮丽的歌喉,掠过翡翠爽眼田野,掠过田间林带高耸的钻天杨顶尖。每个早晨,孟庄然都会选择一条田间林带,迎着初晨的阳光,打一套太极拳,做一套广播体操,拍打过头颅和胸腔,双掌互击,田野便传来噗嗒噗嗒的声音。然后气沉丹田,双目微合,做深呼吸、提肛,就放出几个响屁来。尽管他知道这时间一般很少有人,因为早晨有露水,下地做不了什么活计。
  • 三国吕布重生之现代称霸

    三国吕布重生之现代称霸

    三国吕布因被曹操赐死,但却怨恨刘备忘恩负义不替他求情,由于吕布的大业未成,想施展自己的抱负。后因时空错乱,被穿越到现代一名男子也叫呂布身上,我们且看吕布如何在现代中称霸?
  • 恶婆皇后

    恶婆皇后

    她是摄政王长女,她是京城的恶婆娘,他不要的破鞋那又怎样?四年之后,卷土重来,她站在皇上的身边,笑看天地动,一揽风云涌握着至高无上的权利,她笑,右贤王,别来无恙?这是一部恶毒腹黑女的彪悍成长史,也是一部虐恋情深的选择题集。
  • 反科学研究部

    反科学研究部

    曹依从学生时代一直到工作年纪的事,在校园时,曹依误打误撞进入了一个部门,名曰:反科学研究部。与部长王辉产生了恋情,直到她死去。
  • 重生未来之传承

    重生未来之传承

    钟绮灵倒下的时候带着深深地不甘,她觉得以后自己要奋起,只为自己而活!可是,当她醒了之后,一切都不一样了。幸好有个随身空间陪着她一起面对这一切。但是谁来告诉她,为什么这个面瘫非要跟她一起传承生命?--情节虚构,请勿模仿