登陆注册
5235300000048

第48章

Whatever problems are proved in more than one figure, if they have been established in one figure by syllogism, can be reduced to another figure, e.g. a negative syllogism in the first figure can be reduced to the second, and a syllogism in the middle figure to the first, not all however but some only. The point will be clear in the sequel. If A belongs to no B, and B to all C, then A belongs to no C. Thus the first figure; but if the negative statement is converted, we shall have the middle figure. For B belongs to no A, and to all C. Similarly if the syllogism is not universal but particular, e.g. if A belongs to no B, and B to some C. Convert the negative statement and you will have the middle figure.

The universal syllogisms in the second figure can be reduced to the first, but only one of the two particular syllogisms. Let A belong to no B and to all C. Convert the negative statement, and you will have the first figure. For B will belong to no A and A to all C. But if the affirmative statement concerns B, and the negative C, C must be made first term. For C belongs to no A, and A to all B: therefore C belongs to no B. B then belongs to no C: for the negative statement is convertible.

But if the syllogism is particular, whenever the negative statement concerns the major extreme, reduction to the first figure will be possible, e.g. if A belongs to no B and to some C: convert the negative statement and you will have the first figure. For B will belong to no A and A to some C. But when the affirmative statement concerns the major extreme, no resolution will be possible, e.g. if A belongs to all B, but not to all C: for the statement AB does not admit of conversion, nor would there be a syllogism if it did.

Again syllogisms in the third figure cannot all be resolved into the first, though all syllogisms in the first figure can be resolved into the third. Let A belong to all B and B to some C. Since the particular affirmative is convertible, C will belong to some B: but A belonged to all B: so that the third figure is formed. Similarly if the syllogism is negative: for the particular affirmative is convertible: therefore A will belong to no B, and to some C.

Of the syllogisms in the last figure one only cannot be resolved into the first, viz. when the negative statement is not universal: all the rest can be resolved. Let A and B be affirmed of all C: then C can be converted partially with either A or B: C then belongs to some B.

Consequently we shall get the first figure, if A belongs to all C, and C to some of the Bs. If A belongs to all C and B to some C, the argument is the same: for B is convertible in reference to C. But if B belongs to all C and A to some C, the first term must be B: for B belongs to all C, and C to some A, therefore B belongs to some A.

But since the particular statement is convertible, A will belong to some B. If the syllogism is negative, when the terms are universal we must take them in a similar way. Let B belong to all C, and A to no C: then C will belong to some B, and A to no C; and so C will be middle term. Similarly if the negative statement is universal, the affirmative particular: for A will belong to no C, and C to some of the Bs. But if the negative statement is particular, no resolution will be possible, e.g. if B belongs to all C, and A not belong to some C: convert the statement BC and both premisses will be particular.

It is clear that in order to resolve the figures into one another the premiss which concerns the minor extreme must be converted in both the figures: for when this premiss is altered, the transition to the other figure is made.

One of the syllogisms in the middle figure can, the other cannot, be resolved into the third figure. Whenever the universal statement is negative, resolution is possible. For if A belongs to no B and to some C, both B and C alike are convertible in relation to A, so that B belongs to no A and C to some A. A therefore is middle term. But when A belongs to all B, and not to some C, resolution will not be possible: for neither of the premisses is universal after conversion.

Syllogisms in the third figure can be resolved into the middle figure, whenever the negative statement is universal, e.g. if A belongs to no C, and B to some or all C. For C then will belong to no A and to some B. But if the negative statement is particular, no resolution will be possible: for the particular negative does not admit of conversion.

It is clear then that the same syllogisms cannot be resolved in these figures which could not be resolved into the first figure, and that when syllogisms are reduced to the first figure these alone are confirmed by reduction to what is impossible.

It is clear from what we have said how we ought to reduce syllogisms, and that the figures may be resolved into one another.

同类推荐
  • 五灯严统

    五灯严统

    本书为公版书,为不受著作权法限制的作家、艺术家及其它人士发布的作品,供广大读者阅读交流。汇聚授权电子版权。
  • 缘生初胜分法本经

    缘生初胜分法本经

    本书为公版书,为不受著作权法限制的作家、艺术家及其它人士发布的作品,供广大读者阅读交流。汇聚授权电子版权。
  • 宗鉴录

    宗鉴录

    本书为公版书,为不受著作权法限制的作家、艺术家及其它人士发布的作品,供广大读者阅读交流。汇聚授权电子版权。
  • 佛说箭喻经

    佛说箭喻经

    本书为公版书,为不受著作权法限制的作家、艺术家及其它人士发布的作品,供广大读者阅读交流。汇聚授权电子版权。
  • 吴郡志

    吴郡志

    本书为公版书,为不受著作权法限制的作家、艺术家及其它人士发布的作品,供广大读者阅读交流。汇聚授权电子版权。
热门推荐
  • 江南雨自默默

    江南雨自默默

    为了家族的利益,她亲手写下了一纸协婚公告,三十分钟后,他应征了。五年的相处,爱情大驾光临时,她却发现,他竟然是IT富豪榜榜首的魅瞳CEO,那么他当年为什么要答应倒插门?喻江南,谦和低调的CEO。顾自默,美丽青涩的女大学生。协婚下的蜗居......爱情的等待与徘徊,现实的残酷和美好,当爱情与责任狭路相逢时,是勇者胜,还是注定死亡?———————————————————————简介词穷,坑品保证,绝不弃坑,有点狗血的开场,却是最真实的生活!(蜗牛的QQ:1009577483)另推荐好友月缕凤旋新作:老公-我要离婚!http://m.wkkk.net/a/282044/
  • 凡缘仙路

    凡缘仙路

    有些人生来便就不凡,有些人生来就站在那九天之巅,混沌初开,灵衍万物,三千生灵,坐而论道,且看一介凡人如何在危险重重之中的修真界拓马长枪定乾坤!
  • 骗妻婚约,危险上司嫁不得

    骗妻婚约,危险上司嫁不得

    朱小知从来都没想过霉神会找上她,直到,她遇到他!第一次见面,她直接被他的车子泼了一身的水;第二次见面,她直接在他面前摔得狗吃屎;第三次见面,她直接从自行车里摔下来摔破腿;第四次见面,她直接摔进了游泳池喝了一肚子的水;第五次见面……第N次见面……尼玛!还是放过她吧!他根本就是她的扫把星,碰见他绝对没有好事!但是,她哪里想到,她不过一介小小员工,他竟然要她嫁给他!拜托,她躲他都来不及了,怎么可能还跟他这尊阎罗有这般亲密的交集!但她低估了这个男人,竟然用她母亲来威胁她。他说,嫁给她,他马上安排最权威的医生给她母亲看病,保证药到病除!不信?嫁给他试试就知道了。明明知道面前是个坑,但她为了母亲还是义无反顾,以为给他生完孩子就一了百了,互不相欠,可不曾想,心竟然也丢了。★☆★“燕随西,我宣你!我喜欢你!我爱你!你愿意跟我共度余生吗?”“白痴,别丢人,赶紧给我下来!”某男黑着脸将爬上某活动展台大声告白的某女拖走,丢人丢大发了!★☆★“呜呜!我好可怜啊!”某女一把眼泪一把鼻涕。“你哪里可怜了?”某男一脸无语又心痛。“你就只要崽不要娘,我还不可怜吗?”某女委屈哭诉。“谁说我不要?”这是污蔑!“真的吗?”某女心花怒放,“为了表示你没说谎,快点给我买冰淇淋,西瓜,芒果,我还要吃大闸蟹!”某男一头汗,“朱小知你这个吃货别忘了你是个孕妇!不准吃!”“呜呜!我好可怜啊!什么都不让吃啊!还让不让我娘俩活啦?”“……”
  • 创世记之生肖崛起

    创世记之生肖崛起

    十二生肖一直都是神一般的存在,冥冥中护佑着我们,而今一个激活他们的金手指出现,那就是十二生肖天命珠,它将在凡人中选择融合对象,与之融合,释放神奇的力量,让融合者成为超人般的存在,开启新的修真时代。十二生肖非传说,择天选命金珠合。一时天地风云起,生肖崛起唱战歌。捍卫星球成宿命,血战沙场斩妖魔。
  • 逆梦奔走

    逆梦奔走

    女主人公小敏为寻找三年前意外失踪的表哥南生,走进了南生生前到过的前镇,发现了一系列难解的谜题........
  • 鸿蒙逐道

    鸿蒙逐道

    九大本源,毁灭始者,无敌法宝,灿烂法术,一切都因为世界的毁灭与重生而与秦啸紧紧相连。世界有多大,欲望就多大。人心欲望厉害?还是世界规则力量?人与世界,谁更胜一筹。
  • 星光最美你最珍贵

    星光最美你最珍贵

    被闺蜜设计挖坑,顾桑和秦时无奈分手,八年之后,秦时携真相前来,她的身边却有了别的男人……
  • 钻石王牌之泽村荣纯

    钻石王牌之泽村荣纯

    一位患有心脏病的少年心脏病突发去世,醒来之后发现自己重生在动漫钻石王牌的主角泽村荣纯身上,一直不能运动的病弱少年得到了一具健康的身体之后他会怎么做?他是否能改变结局,唯有胜利我绝不想让!
  • 涩涩的青春

    涩涩的青春

    这部小说讲述了一个生在贫困山村的美丽女孩韩青青的青春成长历程。从她贫穷的童年开始,韩青青一路成长遭遇了各种各样的不幸,她在这些磨难中不断成长,成熟,青春对于她,是苦涩的。她也明白,苦涩的才是真正的青春。
  • 剑舞王朝

    剑舞王朝

    一入江湖,半点不由人,云剑山庄遇刺杀事件,巧解八字之谜,闯小王谷,战狂狼堡,观神器盛会,入万哭寻宝……师承昔年第一杀神血君的他经历种种,展开与月黑盟的一场斗争,步步接近血君遇害之谜,更接触到月黑盟背后的惊天秘密。