It seems important to fully explain the reason why, with the aid of a slide-rule, and after having studied the art of cutting metals, it was possible for the scientifically equipped man, who had never before seen these particular jobs, and who had never worked on this machine, to do work from two and one-half to nine times as fast as it had been done before by a good mechanic who had spent his whole time for some ten to twelve years in doing this very work upon this particular machine.In a word, this was possible because the art of cutting metals involves a true science of no small magnitude, a science, in fact, so intricate that it is impossible for any machinist who is suited to running a lathe year in and year out either to understand it or to work according to its laws without the help of men who have made this their specialty.Men who are unfamiliar with machine-shop work are prone to look upon the manufacture of each piece as a special problem, independent of any other kind of machine-work.They are apt to think, for instance, that the problems connected with making the parts of an engine require the especial study, one may say almost the life study, of a set of engine-making mechanics, and that these problems are entirely different from those which would be met with in machining lathe or planer parts.In fact, however, a study of those elements which are peculiar either to engine parts or to lathe parts is trifling, compared with the great study of the art, or science, of cutting metals, upon a knowledge of which rests the ability to do really fast machine-work of all kinds.
The real problem is how to remove chips fast from a casting or a forging, and how to make the piece smooth and true in the shortest time, and it matters but little whether the piece being worked upon is part, say, of a marine engine, a printing-press, or an automobile.For this reason, the man with the slide-rule, familiar with the science of cutting metals, who had never before seen this particular work, was able completely to distance the skilled mechanic who had made the parts of this machine his specialty for years.
It is true that whenever intelligent and educated men find that the responsibility for making progress in any of the mechanic arts rests with them, instead of upon the workmen who are actually laboring at the trade, then they almost invariably start on the road which leads to the development of a science where, in the past, has existed mere traditional or rule-of-thumb knowledge.When men, whose education has given them the habit of generalizing and everywhere looking for laws, find themselves confronted with a multitude of problems, such as exist in every trade and which have a general similarity one to another, it is inevitable that they should try to gather these problems into certain logical groups, and then search for some general laws or rules to guide them in their solution.As has been pointed out, however, the underlying principles of the management of "initiative and incentive," that is, the underlying philosophy of this management, necessarily leaves the solution of all of these problems in the hands of each individual workman, while the philosophy of scientific management places their solution in the hands of the management.The workman's whole time is each day taken in actually doing the work with his hands, so that, even if he had the necessary education and habits of generalizing in his thought, he lacks the time and the opportunity for developing these laws, because the study of even a simple law involving say time study requires the cooperation of two men, the one doing the work while the other times him with a stop-watch.And even if the workman were to develop laws where before existed only rule-of-thumb knowledge, his personal interest would lead him almost inevitably to keep his discoveries secret, so that he could, by means of this special knowledge, personally do more work than other men and so obtain higher wages.
Under scientific management, on the other hand, it becomes the duty and also the pleasure of those who are engaged in the management not only to develop laws to replace rule of thumb, but also to teach impartially all of the workmen who are under them the quickest ways of working.The useful results obtained from these laws are always so great that any company can well afford to pay for the time and the experiments needed to develop them.Thus under scientific management exact scientific knowledge and methods are everywhere, sooner or later, sure to replace rule of thumb, whereas under the old type of management working in accordance with scientific laws is an impossibility.
The development of the art or science of cutting metals is an apt illustration of this fact.In the fall of 1880, about the time that the writer started to make the experiments above referred to, to determine what constitutes a proper day's work for a laborer, he also obtained the permission of Mr William Sellers, the President of the Midvale Steel Company, to make a series of experiments to determine what angles and shapes of tools were the best for cutting steel, and also to try to determine the proper cutting speed for steel.At the time that these experiments were started it was his belief that they would not last longer than six months, and, in fact, if it had been known that a longer period than this would be required, the permission to spend a considerable sum of money in making them would not have been forthcoming.