登陆注册
5419400000203

第203章

The essential difference of these two modes of cognition consists, therefore, in this formal quality; it does not regard the difference of the matter or objects of both.Those thinkers who aim at distinguishing philosophy from mathematics by asserting that the former has to do with quality merely, and the latter with quantity, have mistaken the effect for the cause.The reason why mathematical cognition can relate only to quantity is to be found in its form alone.For it is the conception of quantities only that is capable of being constructed, that is, presented a priori in intuition;while qualities cannot be given in any other than an empirical intuition.Hence the cognition of qualities by reason is possible only through conceptions.No one can find an intuition which shall correspond to the conception of reality, except in experience; it cannot be presented to the mind a priori and antecedently to the empirical consciousness of a reality.We can form an intuition, by means of the mere conception of it, of a cone, without the aid of experience; but the colour of the cone we cannot know except from experience.I cannot present an intuition of a cause, except in an example which experience offers to me.Besides, philosophy, as well as mathematics, treats of quantities; as, for example, of totality, infinity, and so on.Mathematics, too, treats of the difference of lines and surfaces- as spaces of different quality, of the continuity of extension- as a quality thereof.But, although in such cases they have a common object, the mode in which reason considers that object is very different in philosophy from what it is in mathematics.The former confines itself to the general conceptions;the latter can do nothing with a mere conception, it hastens to intuition.In this intuition it regards the conception in concreto, not empirically, but in an a priori intuition, which it has constructed; and in which, all the results which follow from the general conditions of the construction of the conception are in all cases valid for the object of the constructed conception.

Suppose that the conception of a triangle is given to a philosopher and that he is required to discover, by the philosophical method, what relation the sum of its angles bears to a right angle.He has nothing before him but the conception of a figure enclosed within three right lines, and, consequently, with the same number of angles.He may analyse the conception of a right line, of an angle, or of the number three as long as he pleases, but he will not discover any properties not contained in these conceptions.But, if this question is proposed to a geometrician, he at once begins by constructing a triangle.He knows that two right angles are equal to the sum of all the contiguous angles which proceed from one point in a straight line; and he goes on to produce one side of his triangle, thus forming two adjacent angles which are together equal to two right angles.He then divides the exterior of these angles, by drawing a line parallel with the opposite side of the triangle, and immediately perceives that be has thus got an exterior adjacent angle which is equal to the interior.Proceeding in this way, through a chain of inferences, and always on the ground of intuition, he arrives at a clear and universally valid solution of the question.

But mathematics does not confine itself to the construction of quantities (quanta), as in the case of geometry; it occupies itself with pure quantity also (quantitas), as in the case of algebra, where complete abstraction is made of the properties of the object indicated by the conception of quantity.In algebra, a certain method of notation by signs is adopted, and these indicate the different possible constructions of quantities, the extraction of roots, and so on.After having thus denoted the general conception of quantities, according to their different relations, the different operations by which quantity or number is increased or diminished are presented in intuition in accordance with general rules.Thus, when one quantity is to be divided by another, the signs which denote both are placed in the form peculiar to the operation of division; and thus algebra, by means of a symbolical construction of quantity, just as geometry, with its ostensive or geometrical construction (a construction of the objects themselves), arrives at results which discursive cognition cannot hope to reach by the aid of mere conceptions.

同类推荐
  • 劝孝歌

    劝孝歌

    本书为公版书,为不受著作权法限制的作家、艺术家及其它人士发布的作品,供广大读者阅读交流。汇聚授权电子版权。
  • Itinerary of Archibishop

    Itinerary of Archibishop

    本书为公版书,为不受著作权法限制的作家、艺术家及其它人士发布的作品,供广大读者阅读交流。汇聚授权电子版权。
  • 大明皇陵碑

    大明皇陵碑

    本书为公版书,为不受著作权法限制的作家、艺术家及其它人士发布的作品,供广大读者阅读交流。汇聚授权电子版权。
  • 渐悟集

    渐悟集

    本书为公版书,为不受著作权法限制的作家、艺术家及其它人士发布的作品,供广大读者阅读交流。汇聚授权电子版权。
  • 二林唱和詩

    二林唱和詩

    本书为公版书,为不受著作权法限制的作家、艺术家及其它人士发布的作品,供广大读者阅读交流。汇聚授权电子版权。
热门推荐
  • 雪球专刊第046期:牛市来了,买什么?

    雪球专刊第046期:牛市来了,买什么?

    我确实有不少股票推荐,看好看衰的理由都写在雪球自选股备注里了;对投资也有一些看法,都写在雪球帖子里了;也做过一些自认为还不错的交易,都披露在雪球里了,但是,我推荐什么股票给你呢?这前不着村后不着店的。
  • 皇后值千金:异界发财指南

    皇后值千金:异界发财指南

    【新书发布:《妖孽世子:杠上绝色娘子》】被小仙炸死的百里幽若携七色花魂穿异世,新生的她开超市,赚了个盆体满钵,斗渣女,赚了个妹控亲哥,玩医术,赚了个亲亲外公,她天生爱财护短,某天发了善心,却引来了高冷霸道的某男,一会英雄救美,一会送金送银送宝石,连贴身护卫都送给了她,说好的高冷在她面前全化作绕指柔,直到有一天:“阿若,给我生个儿子吧”“what?不会又要送儿子吧!!”话还没说完,某男已经将她打横抱走…
  • 邪王独宠:爱妃,请上榻

    邪王独宠:爱妃,请上榻

    她是古武世家的封雪灵,却一朝穿越,成为了封府不受宠的大小姐。从睁眼的芳华绝代,到闭眼的绝世倾城。斗狠毒庶妹!欺渣心父亲!甩她一街美男!!“娘子,该上榻了。”某男笑得一脸妖孽,直接欺身而上。“君临天,你知道脸这个字怎么写吗?”某女咬牙切齿的说道。“本王只知道,我的眸中,只有你封雪灵一人的倾世容颜。”看她封雪灵,如何与他携手站在强者巅峰,一身白衣倾城,墨衣倾世,如何笑看天下!
  • 和谐社会视野下社会体育的未来发展研究

    和谐社会视野下社会体育的未来发展研究

    体育运动锻炼,既可以帮助人们强健筋骨,又可以帮助人们健美心灵,还可以有效的帮助人们融入社会群体当中。因此,在此种意义上来讲,体育这项运动是可以起到维护社会稳定的积极作用的。本文主要研究社会体育方式休闲化发展趋势、体育选择多样化发展趋势、体育区域扩大化发展趋势、体育性别鲜明化发展趋势、体育职业多元化发展趋势、体育健身科学化发展趋势。从这些方面研究体育对和谐社会构建起到的作用。
  • boss深度宠:甜妻不预售

    boss深度宠:甜妻不预售

    陪朋友参加酒会,妹妹要加害于她。害她不得已失去了第一次再次碰面时,“怎么是你?”男人嘴角勾起邪魅的弧度,“哦?没想到江小姐你还记得我。看来你对我的第一印象很深。”阴差阳错进军到了娱乐圈,她的总裁大人竟然是他?"让她当他女人?!做梦!"
  • 著名军事家成才故事(中国名人成才故事)

    著名军事家成才故事(中国名人成才故事)

    本套书精选荟萃了中国历史上最具有代表性的也最具有影响力的名人,编辑成了这套《中国名人成才故事》(共10册),即《著名政治家成才故事》、《著名军事家成才故事》、《著名谋略家成才故事》、《著名思想家成才故事》、《著名文学家成才故事》、《著名艺术家成才故事》、《著名科学家成才故事》、《著名发明家成才故事》、《著名财富家成才故事》、《著名教育家成才故事》等,这些故事既有趣味性,又蕴含深刻的道理,能够带给我们深刻的启迪,是青少年课外不可缺少的精神食粮。
  • 修魔高手在校园

    修魔高手在校园

    高中生秦奋,家境贫寒,母亲重病,深夜开出租赚钱,却遭遇持刀胁迫,意外获得了魔门传承,从此纵横校园,狂霸都市,笑傲天下。
  • 标准

    标准

    叶荞提前从虹阳大厦走出来,如果再不出来,她感觉凌致远的眼神可能会烧死她。一男一女,少时情投意合,N年之后因同学聚会重逢,继而生出诸多感叹,怨什么时间无情,阴错阳差之类,之后旧情复燃,叶荞厌恶这种老套的婚外恋情。她习惯性地拿出一棵烟叼在嘴里,还没点燃,便有短信的提示音响起,打开一看,是苏晓荷发来的,就几个字——早些回家。她笑笑,心里泛起了温暖,便一个人静静地倚在楼梯上吸烟。这个世界上,叶荞可以为两个人不顾生死,其一是母亲,其二就是苏晓荷。叶荞看过一本杂志,说朋友分好多种,有的朋友是丝绸,华丽养眼,用来炫耀;有的朋友是涤纶,结实耐久,用来喝茶聊天;而晓荷却是棉做的,朴素、妥帖、温暖、可以跟随一生。
  • 人文常识悦读

    人文常识悦读

    人文,是人类创造的精华,是人类智慧发展的结晶,是人类文明的结果。人文的范围很广泛,它包括人创造的一切东西,用简单的话来说,就是除了自然之外的一切都是人文,人文关系到我们生活中的方方面面。学生正在增长知识,正是积累知识的绝佳时期,本书的目的就是让学生赢在起跑线上,只有拥有的知识越扎实,赢的实力才会越大。
  • 萌妃有点甜:傲娇殿下,别跑!

    萌妃有点甜:傲娇殿下,别跑!

    一个犯蠢,身为小霸王的她被送入宫,虽是“寄人篱下”,依旧我行我素。贪玩会耍人唬人收拾人,犯错会认错撒娇求原谅,傲娇小哥哥,请接招吧!咱聪明伶俐能言善辩,要惩治?这么可爱会撒娇,舍得吗?某男摇头:舍不得,任她胡闹去吧!咱能屈能伸人小鬼大,要宠爱?恐怕天都要被捅出大窟窿吧!护得起吗?某男点头:护得起,她开心就好。【甜宠文,腹黑配傲娇,绝配!】