登陆注册
5419400000208

第208章

(b) Mathematical definitions cannot be erroneous.For the conception is given only in and through the definition, and thus it contains only what has been cogitated in the definition.But although a definition cannot be incorrect, as regards its content, an error may sometimes, although seldom, creep into the form.This error consists in a want of precision.Thus the common definition of a circle- that it is a curved line, every point in which is equally distant from another point called the centre- is faulty, from the fact that the determination indicated by the word curved is superfluous.For there ought to be a particular theorem, which may be easily proved from the definition, to the effect that every line, which has all its points at equal distances from another point, must be a curved line- that is, that not even the smallest part of it can be straight.Analytical definitions, on the other hand, may be erroneous in many respects, either by the introduction of signs which do not actually exist in the conception, or by wanting in that completeness which forms the essential of a definition.In the latter case, the definition is necessarily defective, because we can never be fully certain of the completeness of our analysis.For these reasons, the method of definition employed in mathematics cannot be imitated in philosophy.

2.Of Axioms.These, in so far as they are immediately certain, are a priori synthetical principles.Now, one conception cannot be connected synthetically and yet immediately with another; because, if we wish to proceed out of and beyond a conception, a third mediating cognition is necessary.And, as philosophy is a cognition of reason by the aid of conceptions alone, there is to be found in it no principle which deserves to be called an axiom.Mathematics, on the other hand, may possess axioms, because it can always connect the predicates of an object a priori, and without any mediating term, by means of the construction of conceptions in intuition.Such is the case with the proposition: Three points can always lie in a plane.

On the other hand, no synthetical principle which is based upon conceptions, can ever be immediately certain (for example, the proposition: Everything that happens has a cause), because I require a mediating term to connect the two conceptions of event and cause-namely, the condition of time-determination in an experience, and Icannot cognize any such principle immediately and from conceptions alone.Discursive principles are, accordingly, very different from intuitive principles or axioms.The former always require deduction, which in the case of the latter may be altogether dispensed with.

Axioms are, for this reason, always self-evident, while philosophical principles, whatever may be the degree of certainty they possess, cannot lay any claim to such a distinction.No synthetical proposition of pure transcendental reason can be so evident, as is often rashly enough declared, as the statement, twice two are four.It is true that in the Analytic I introduced into the list of principles of the pure understanding, certain axioms of intuition; but the principle there discussed was not itself an axiom, but served merely to present the principle of the possibility of axioms in general, while it was really nothing more than a principle based upon conceptions.For it is one part of the duty of transcendental philosophy to establish the possibility of mathematics itself.

Philosophy possesses, then, no axioms, and has no right to impose its a priori principles upon thought, until it has established their authority and validity by a thoroughgoing deduction.

3.Of Demonstrations.Only an apodeictic proof, based upon intuition, can be termed a demonstration.Experience teaches us what is, but it cannot convince us that it might not have been otherwise.

Hence a proof upon empirical grounds cannot be apodeictic.A priori conceptions, in discursive cognition, can never produce intuitive certainty or evidence, however certain the judgement they present may be.Mathematics alone, therefore, contains demonstrations, because it does not deduce its cognition from conceptions, but from the construction of conceptions, that is, from intuition, which can be given a priori in accordance with conceptions.The method of algebra, in equations, from which the correct answer is deduced by reduction, is a kind of construction- not geometrical, but by symbols-in which all conceptions, especially those of the relations of quantities, are represented in intuition by signs; and thus the conclusions in that science are secured from errors by the fact that every proof is submitted to ocular evidence.Philosophical cognition does not possess this advantage, it being required to consider the general always in abstracto (by means of conceptions), while mathematics can always consider it in concreto (in an individual intuition), and at the same time by means of a priori representation, whereby all errors are rendered manifest to the senses.The former- discursive proofs- ought to be termed acroamatic proofs, rather than demonstrations, as only words are employed in them, while demonstrations proper, as the term itself indicates, always require a reference to the intuition of the object.

It follows from all these considerations that it is not consonant with the nature of philosophy, especially in the sphere of pure reason, to employ the dogmatical method, and to adorn itself with the titles and insignia of mathematical science.It does not belong to that order, and can only hope for a fraternal union with that science.

同类推荐
  • 虚舟省禅师语录

    虚舟省禅师语录

    本书为公版书,为不受著作权法限制的作家、艺术家及其它人士发布的作品,供广大读者阅读交流。汇聚授权电子版权。
  • 五家宗旨纂要

    五家宗旨纂要

    本书为公版书,为不受著作权法限制的作家、艺术家及其它人士发布的作品,供广大读者阅读交流。汇聚授权电子版权。
  • 塔子溝紀略

    塔子溝紀略

    本书为公版书,为不受著作权法限制的作家、艺术家及其它人士发布的作品,供广大读者阅读交流。汇聚授权电子版权。
  • 阿弥陀经义记

    阿弥陀经义记

    本书为公版书,为不受著作权法限制的作家、艺术家及其它人士发布的作品,供广大读者阅读交流。汇聚授权电子版权。
  • 大乘遍照光明藏无字法门经

    大乘遍照光明藏无字法门经

    本书为公版书,为不受著作权法限制的作家、艺术家及其它人士发布的作品,供广大读者阅读交流。汇聚授权电子版权。
热门推荐
  • 神级古武高手

    神级古武高手

    【新书已经上传:透视小保安】天才少年强势回归,纵横花都,一路狂歌不断,横扫八方!三个校花一台戏,作为这台戏的唯一男主角,林宇表示一定要低调,低调,再低调……书友群(清轩小筑):482715935,妹纸多多,红包多多噢!!!
  • 凤飞于林:重生之浴火凰妃

    凤飞于林:重生之浴火凰妃

    她与他,曾经两小无猜,互投情谊。她为他,生养一女,一共二十多年的情分,却在一夕之间!覆灭了!他为了达到目的不择手段!甚至断她手足,毁她容颜!更是当着她的面,杀死了他们共同的孩子!只为逼她交出《飞舞决》,然而……“我这次回来,什么都不要,我只要你死!”一朝重生,她走上报仇雪恨之路,欺她者,虽强必诛!
  • 狂后废帝

    狂后废帝

    一个俏丽的身影从天而降,一脚踏上龙椅把他逼到靠椅处,嘴角噙着篾笑狂妄的看着他“一年前,你对我说,你要废了我这个皇后。”“……”他皱眉深邃的盯着眼前的她。“一年后,我告诉你,我要废了你这个皇上。”她当众把匕首插入了他胸膛的左边,脸上带着狂傲不羁的笑意。她非她,亦是她。一年前,他当她透明,因为她毫无可取之处一年后,他当她神明,因为她浑身全都是宝一年前,她当他神明,因为他是她的夫君一年后,她当他透明,因为他根本不配她若说她善良,她却杀人从不眨眼若说她残忍,她却从不滥杀无辜若说她可爱,她暧昧眼神动心魄若说她性感,她浅浅梨涡挂嘴角她明明平凡,但却又不平凡无论是因爱,因恨,因情,因仇她亦从来都是有仇必报……因此:你们,休要惹我,让我流泪的人,我一定会让他流血。他说:〖我的目的只有这个天下,为了我的目的,只能让你流泪。〗她说:【所以,你的天下,我要了】他说:〖其实我不想那么强大,我只要陪伴在我爱的人身边,这就够了〗她说:【我只有那么强大,才能够保护我爱的人,这,你不懂。】他说:〖其实……我懂的。〗他说:〖作为皇上,就算有爱的人,那也不能付出全部,因为他背负着整个江山〗她说:【所以,我从始至终,对你不抱有任何期待。】螳螂捕蝉黄雀在后他设计他耍阴谋究竟是谁掉入了谁的圈套究竟最后鹿死谁手谁也意料不到不是小白文,不喜误入此文加入了半价优惠,所以大概需要不到三百潇湘币即可。
  • 败家小娘子

    败家小娘子

    阎墨是天龙国最有钱的男人,掌管着天龙国的经济命脉,称为:钱皇但此人神秘非常,行事冷酷无情,办事雷厉风行,皇帝也要给钱皇三份薄面,世人相传宁可得罪皇帝,也不能得罪钱皇…一日:钱皇外出带回一个活泼调皮外加败金,再加小腐的逃婚女谁知她竟是亦正亦邪毒医的小徒弟,善于用毒…传闻:钱皇见到她的那一眼开始,从此便移不开眼…传闻:一百万两,她弹指间灰飞残渣不剩~注意!这是黄金,让人发指啊有木有!!!传闻:钱皇对她宠到无法无天,除了她去和别的男人约会。要什么给什么,她说什么便是什么精彩片段A:女主:嘿嘿嘿,本姑娘爬墙去也…男主:娘子坐在墙上干什么?娘子喜欢走这个方向?明天我叫人将这里打通…女主:手一松,‘碰’掉落在地…男主…精彩片段B:男主:你想到哪儿去?女主:去抢钱庄,不行吗?男主:为夫陪你,XX有家大钱庄,我们去抢那家吧女主:那不是我们自己家的吗?男主:是啊…精彩片段C:女主:敢来抢我的夫君,我让你有来无回…男主:娘子你要怎么做,为夫配合你(在小脸上蹭蹭…女主:我不毒死她我也要剥她一层皮男主…精彩片段D:女主:夫君,我要出去找男人约会…男主:走吧,为夫陪你约会去…女主…男主…钱皇手下四大钱王:东钱王:东林浩喜赌,一副奸商样南钱王:南项甫喜吃,因此身材肥胖无比,满脸横肉北钱王:北颜曦抠门,家里三大美夫,骨瘦如柴西钱王:西帅帅喜女色,风流成性宠宠宠+小搞笑+小阴谋+小腹黑+…******************************************女主:夹谷笑笑由亲亲(樱花的星泪抱走)男主:阎墨(钱皇)由亲亲(花逝※终成殇拖走)男配一:东林浩(东钱王)由亲亲(小豆子1996带着飘走)男配二:南项甫(南钱王)由亲亲(nancy95扛走)男配三:北颜曦(北钱王)由亲亲(星飞雪偷走~~~逮住)男配四:西帅帅(西钱王)由十五(宦江诚打包带走)男配五:龙霸天(皇帝)由亲亲(雪灵児抓走)男配六:穆啸(武林盟主)由(人偶娃娃瞄走)男配七:雷天苍(王爷)由大师姐(万里月带着飞走)男配八:侯白浩(奸商)由师叔(端夜楠捧走)女配一:夹谷吟(夹谷家大小姐)好吧!因为这个人实在是可恶,笑笑领回家自己的养着,不高兴了皮鞭伺候,吼吼女配二:南项心(南钱王的妹妹)
  • 底特律化身为人

    底特律化身为人

    本书由2018年PS4游戏机独占游戏大作(底特律:成为人类)(底特律:我欲成人)(底特律:变人)(底特律:化身为人)改编。在2048年科技相对现在已经有了飞跃的变化。美国底特律城市是很先进的工业化城市(仿生人基地)。在这座充斥着尖端科技的城市中,卡菈(Kara)、康纳(Connor)和马库斯(Markus)这三位仿生人的命运将因为各种事件交织在一起,创造属于他们的故事。
  • 甜甜小青梅傲娇竹马溺爱宠

    甜甜小青梅傲娇竹马溺爱宠

    三岁的顾甜甜遇到了七岁的韩墨珩,这产生的化学爆炸,足以炸掉一个地球。产生的狗粮,足以撑死哈巴狗,柯基…所以导致在他们俩身边的朋友都认为,现在的宠物犬这么稀有,都是被他俩撑死的二十年后新婚当晚,“甜甜,我都忍了二十年,终于现在你是韩墨珩的专属了”漫漫长夜,无心睡眠~『此文是宠文,全程无虐』
  • 暑假工,我的另类成长

    暑假工,我的另类成长

    二零一四年六月,我迎来了人生中第一次有意义的考试——高考。到今天为止,我依然不知道它对我的意义是什么,我也不知道我应该感谢它还是怨恨它。曾经,它让我哭过,让我笑过;让我期待过,也让我失望过。高考失败了,是否就代表我的人生也跟着一起失败了!我的心里没有定论,因为大山里的孩子除了高考我不知道别的出路是什么,我也不知道自己这一生将何去何从!想的太多,只能让自己过得太累。两次暑假打工,让我成长了很多,也让我见识了很多。第一次是第一次高考完的暑假,第二次是大学第一个暑假,两次分别去了北京和深圳。不去尝试,你永远不知道自己的潜力有多大;不去体验,你永远不知道自己什么时候才能长大。
  • 毗尼心一卷

    毗尼心一卷

    本书为公版书,为不受著作权法限制的作家、艺术家及其它人士发布的作品,供广大读者阅读交流。汇聚授权电子版权。
  • 大明侠影录

    大明侠影录

    张公瑾,生活在终南山附近的县城,小时候救起过一只白狐。他做了八年的小道士,根本不相信世上有狐仙之说。自从拥有法眼透视神通之后,少年开启鉴宝人生,元青花、明家具、羊脂玉、冰翡翠、唐伯虎的美人、郑板桥的竹子、张大千的虎、齐白石的虾,让人眼花缭乱。
  • 毒迹寻踪

    毒迹寻踪

    一场独特的新书发布会,一位神秘小说家在发布会现场中毒。鸡尾酒、巧克力,成为破案的焦点,到底是谁下的毒?一位舞蹈老师,用血写的两个英文字母,一个针孔,下毒真凶真的是那位医生吗?一起离奇的车祸,本以为是普通的酒后驾车,却牵引出一起蓄谋车祸案。一切细节都无法逃过小D探长的双眼,真正的凶手即将浮出水面。