登陆注册
5200500000044

第44章

The next question to consider is whether the elements are finite or infinite in number, and, if finite, what their number is.Let us first show reason or denying that their number is infinite, as some suppose.We begin with the view of Anaxagoras that all the homoeomerous bodies are elements.Any one who adopts this view misapprehends the meaning of element.Observation shows that even mixed bodies are often divisible into homoeomerous parts; examples are flesh, bone, wood, and stone.Since then the composite cannot be an element, not every homoeomerous body can be an element; only, as we said before, that which is not divisible into bodies different in form.But even taking 'element' as they do, they need not assert an infinity of elements, since the hypothesis of a finite number will give identical results.Indeed even two or three such bodies serve the purpose as well, as Empedocles' attempt shows.Again, even on their view it turns out that all things are not composed of homocomerous bodies.They do not pretend that a face is composed of faces, or that any other natural conformation is composed of parts like itself.Obviously then it would be better to assume a finite number of principles.They should, in fact, be as few as possible, consistently with proving what has to be proved.This is the common demand of mathematicians, who always assume as principles things finite either in kind or in number.Again, if body is distinguished from body by the appropriate qualitative difference, and there is a limit to the number of differences (for the difference lies in qualities apprehended by sense, which are in fact finite in number, though this requires proof), then manifestly there is necessarily a limit to the number of elements.

There is, further, another view-that of Leucippus and Democritus of Abdera-the implications of which are also unacceptable.The primary masses, according to them, are infinite in number and indivisible in mass: one cannot turn into many nor many into one; and all things are generated by their combination and involution.Now this view in a sense makes things out to be numbers or composed of numbers.The exposition is not clear, but this is its real meaning.And further, they say that since the atomic bodies differ in shape, and there is an infinity of shapes, there is an infinity of simple bodies.But they have never explained in detail the shapes of the various elements, except so far to allot the sphere to fire.Air, water, and the rest they distinguished by the relative size of the atom, assuming that the atomic substance was a sort of master-seed for each and every element.

Now, in the first place, they make the mistake already noticed.The principles which they assume are not limited in number, though such limitation would necessitate no other alteration in their theory.

Further, if the differences of bodies are not infinite, plainly the elements will not be an infinity.Besides, a view which asserts atomic bodies must needs come into conflict with the mathematical sciences, in addition to invalidating many common opinions and apparent data of sense perception.But of these things we have already spoken in our discussion of time and movement.They are also bound to contradict themselves.For if the elements are atomic, air, earth, and water cannot be differentiated by the relative sizes of their atoms, since then they could not be generated out of one another.The extrusion of the largest atoms is a process that will in time exhaust the supply; and it is by such a process that they account for the generation of water, air, and earth from one another.Again, even on their own presuppositions it does not seem as if the clements would be infinite in number.The atoms differ in figure, and all figures are composed of pyramids, rectilinear the case of rectilinear figures, while the sphere has eight pyramidal parts.The figures must have their principles, and, whether these are one or two or more, the simple bodies must be the same in number as they.Again, if every element has its proper movement, and a simple body has a simple movement, and the number of simple movements is not infinite, because the simple motions are only two and the number of places is not infinite, on these grounds also we should have to deny that the number of elements is infinite.

同类推荐
  • 药师三昧行法

    药师三昧行法

    本书为公版书,为不受著作权法限制的作家、艺术家及其它人士发布的作品,供广大读者阅读交流。汇聚授权电子版权。
  • 艺概词曲概

    艺概词曲概

    本书为公版书,为不受著作权法限制的作家、艺术家及其它人士发布的作品,供广大读者阅读交流。汇聚授权电子版权。
  • 南游记

    南游记

    本书为公版书,为不受著作权法限制的作家、艺术家及其它人士发布的作品,供广大读者阅读交流。汇聚授权电子版权。
  • 百花弹词

    百花弹词

    本书为公版书,为不受著作权法限制的作家、艺术家及其它人士发布的作品,供广大读者阅读交流。汇聚授权电子版权。
  • 六十种曲幽闺记

    六十种曲幽闺记

    本书为公版书,为不受著作权法限制的作家、艺术家及其它人士发布的作品,供广大读者阅读交流。汇聚授权电子版权。
热门推荐
  • 仙缘创世录

    仙缘创世录

    夫仙者,得天地造化者也,炼精气,夺阴阳,一气化三海,三海凝三魂,而后锻六魄,化元神,通天地玄应,化神虚通衢,渡三灾九劫,破真我遁镜,得圆满,入九天,是为破镜入天,得道成仙。 桃源海燕第一部作品,可以扑街,绝不烂尾,敬请期待。
  • 列昂尼德钟表店

    列昂尼德钟表店

    上个世纪三十年代初,哈尔滨的霍尔瓦特大街(现中山路)是一条很热闹的商业街,这里住着许多法国人和俄罗斯人。当然,这里也有许多混血儿。在霍尔瓦特大街的中段有一个不太引人注意的钟表修理店,叫列昂尼德钟表修理店。修钟表的师傅是个混血儿,他有两个名字,一个名字叫唐天琢,一个名字就叫做列昂尼德。这个混血儿长着一头卷发,但鼻子不算太大,有中国人的特征,取唐天琢这个名字,是因为他的母亲叫唐贤珠。他随了他母亲的姓。他父亲是一位酿酒师,在哈尔滨东的菲克图有个酿酒厂。这个酿酒厂也叫列昂尼德酿酒厂。列昂尼德是这位酿酒师的名字,汉语的意思是雄狮。
  • 必知的航天科技(青少年科技爱好培养)

    必知的航天科技(青少年科技爱好培养)

    科学是人类进步的第一推动力,而科学知识的普及则是实现这一推动的必由之路。在新的时代,社会的进步、科技的发展、人们生活水平的不断提高,为我们青少年的科普教育提供了新的契机。抓住这个契机,大力普及科学知识,传播科学精神,提高青少年的科学素质,是我们全社会的重要课题。
  • 翊圣保德传

    翊圣保德传

    本书为公版书,为不受著作权法限制的作家、艺术家及其它人士发布的作品,供广大读者阅读交流。汇聚授权电子版权。
  • 荒岛生活记

    荒岛生活记

    一场风暴,不仅让林简跟费席安捡了个孩子,还和一群人流落到一个孤岛上。随着救援希望的逐渐破灭,加上岛屿怪异的生态环境,岛上的众人开始暴露出人性的黑暗面。费席安、林简带着孩子离开,去寻找安全的生存地。故事由此展开。这就是一男一女在互相扶持养孩子的过程中相爱,最后过上只羡鸳鸯不羡仙的生活。PS:此文风格混搭,前期种田文,中间有兽化情节,后面是快穿。快穿虽然是后面部分,但篇幅较长,应该是文章的主要风格。
  • 娘子你别太嚣张

    娘子你别太嚣张

    段清菡,唯恐天下不乱的小女子十六岁奉父命下山完成爷爷的誓言,保护绚彩山庄的凌大小姐下山的路上,闯祸不断,差点没将寻隐城弄个天翻地覆正在得意之际,女扮男装的她遇见了貌比天仙的凌大小姐“一不小心”调戏了她,却被凌大小姐不客气的报复了回来她什么都吃,就是不吃亏,这口气又如何咽得下?原本打算趁凌大小姐洗澡的时候好好羞辱她一番谁知道那个貌比天仙的美女突然间变成了如妖孽般的美男。。。。。。凌若心,对外是天下第一绣庄的当家,是经商与刺绣的天才,一个举动便能令整个凤引国抖上一抖,风光无限其实却因为当年皇帝的一份绚彩山庄传女不传男的狗屁圣旨自小男扮女装以保住祖上传下来的基业娘却让他“嫁”给段叔叔的女儿段清菡他虽然男扮女装,可怎么都是堂堂的男子汉怎么可能“嫁”人呢?-------------------------------------------------------------------------------------------推荐自己的文:《丑妃无敌》:丑女不丑,帅哥很帅《坏坏相公倒霉妻》:聪慧可人的女主,腹黑的男主《娘子你别太嚣张》:男扮女装,女扮男装反串《夫君,女子不好欺!》:《错惹狂帝》:《王爷让偶轻薄下》:被人退婚不是可耻的事情,而是生命的新生《劣妻》:夜给自己建了一个群,群号:45841753,非铁杆勿入,定期清理群成员,敲门砖:潇湘帐户名+喜欢的文名
  • 情商决定人生

    情商决定人生

    丹尼尔·戈尔曼在他的《情商智力》一书中指出:情商与人的生活各方面息息相关,是影响人一生快乐、成功与否的关键,情商比智商更重要。研究证实,一个人的成功,20%来自于智商,而80%则是取决于他的情商。本书共分六篇,在介绍了什么是情商、智商、情商的作用与内容、情商决定智商后,从情商所包含的五个方面出发,分别介绍了情商的五个方面的内容,翔实地讲解了情商到底怎样影响我们的工作与生活的,以及我们该如何提高我们的情商,很好地阐述了“情商比智商更能决定人生”这个主题。在本书中,不仅仅是以简单的理论知识来作阐述,而且还使用了许多具体的事例与精彩的小故事,使读者能在事例与故事中更形象地领悟情商。
  • 我被大佬宠成了玛丽苏女主

    我被大佬宠成了玛丽苏女主

    萧家二小姐十八岁以前,跟“真爱”腻歪的死去活来;十八岁以后,“真爱”抱着她的“姐姐”,腻歪的死去活来。她痛快转身飞法国潇洒了五年。五年后,她回来虐天虐地虐渣渣,结果一不小心被某大佬宠成了玛丽苏女主。片段:萧小姐被车撞了住进了医院,大佬亲力亲为照顾。手术后第一天,滴水不能沾,萧小姐渴的不行,眼巴巴的小眼神看的大佬心疼的不行。“乖,再忍一忍,忍过这一天,我做好吃的好喝的给你好不好?”一听要忍一天,萧小姐小嘴一瘪,就要哭出来了。大佬心疼的抱住她小身子,非常温柔的哄着:“乖乖,只要忍过这一天就好了。今天我陪着你一起,什么也不吃什么也不喝,一起饿肚子好不好?”萧小姐被逗笑。【这本书甜的不行!宠的不行!!好看的不行!!!快来看呀~~~~~~~】
  • 斗智斗勇的中国战争

    斗智斗勇的中国战争

    我们的祖国是一个美丽、古老的东方大国。本丛书是反映中国社会风貌的百科读物,通过精练的文字,用简洁生动的语言为读者介绍了中国的文化、艺术等异彩纷呈的画卷。
  • 谋杀1990

    谋杀1990

    悬疑之父,大师之中的大师,只可模仿,不可超越的巅峰,直逼理性与疯狂、压制与抗争的心理极限,你永远都猜不到故事的结局,你也无法预想故事情节的发展!精品、经典、精装、超值价蕾遇生与死、罪与罚的灵魂拷问。