If the reason is clear to the reader why the rule-of-thumb knowledge obtained by the machinist who is engaged on repeat work cannot possibly compete with the true science of cutting metals, it should be even more apparent why the high-class mechanic, who is called upon to do a great variety of work from day to day, is even less able to compete with this science.The high-class mechanic who does a different kind of work each day, in order to do each job in the quickest time, would need, in addition to a thorough knowledge of the art of cutting metals, a vast knowledge and experience in the quickest way of doing each kind of hand work.And the reader, by calling to mind the gain which was made by Mr Gilbreth through his motion and time study in laying bricks, will appreciate the great possibilities for quicker methods of doing all kinds of hand work which lie before every tradesman after he has the help which comes from a scientific motion and time study of his work.
For nearly thirty years past, time-study men connected with the management of machine-shops have been devoting their whole time to a scientific motion study, followed by accurate time study, with a stop-watch, of all of the elements connected with the machinist's work.When, therefore, the teachers, who form one section of the management, and who are cooperating with the working men, are in possession both of the science of cutting metals and of the equally elaborate motion-study and time-study science connected with this work, it is not difficult to appreciate why even the highest class mechanic is unable to do his best work without constant daily assistance from his teachers.And if this fact has been made clear to the reader, one of the important objects in writing this paper will have been realized.
It is hoped that the illustrations which have been given make it apparent why scientific management must inevitably in all cases produce overwhelmingly greater results, both for the company and its employees, than can be obtained with the management of "initiative and incentive." And it should also be clear that these results have been attained, not through a marked superiority in the mechanism of one type of management over the mechanism of another, but rather through the substitution of one set of underlying principles for a totally different set of principles, by the substitution of one philosophy for another philosophy in industrial management.
To repeat then throughout all of these illustrations, it will be seen that the useful results have hinged mainly upon (1) the substitution of a science for the individual judgment of the workman; (2) the scientific selection and development of the workman, after each man has been studied, taught, and trained, and one may say experimented with, instead of allowing the workmen to select themselves and develop in a haphazard way; and (3) the intimate cooperation of the management with the workmen, so that they together do the work in accordance with the scientific laws which have been developed, instead of leaving the solution of each problem in the hands of the individual workman.In applying these new principles, in place of the old individual effort of each workman, both sides share almost equally in the daily performance of each task, the management doing that part of the work for which they are best fitted, and the workmen the balance.
It is for the illustration of this philosophy that this paper has been written, but some of the elements involved in its general principles should be further discussed.
The development of a science sounds like a formidable undertaking, and in fact anything like a thorough study of a science such as that of cutting metals necessarily involves many years of work.The science of cutting metals, however, represents in its complication, and in the time required to develop it, almost an extreme case in the mechanic arts.Yet even in this very intricate science, within a few months after starting, enough knowledge had been obtained to much more than pay for the work of experimenting.This holds true in the case of practically all scientific development in the mechanic arts.The first laws developed for cutting metals were crude, and contained only a partial knowledge of the truth, yet this imperfect knowledge was vastly better than the utter lack of exact information or the very imperfect rule of thumb which existed before, and it enabled the workmen, with the help of the management, to do far quicker and better work.
For example, a very short time was needed to discover one or two types of tools which, though imperfect as compared with the shapes developed years afterward, were superior to all other shapes and kinds in common use.These tools were adopted as standard and made possible an immediate increase in the speed of every machinist who used them.These types were superseded in a comparatively short time by still other tools which remained standard until they in their turn made way for later improvements.(6*)The science which exists in most of the mechanic arts is, however, far simpler than the science of cutting metals.In almost all cases, in fact, the laws or rules which are developed are so simple that the average man would hardly dignify them with the name of a science.In most trades, the science is developed through a comparatively simple analysis and time study of the movements required by the workmen to do some small part of his work, and this study is usually made by a man equipped merely with a stop-watch and a properly ruled notebook.Hundreds of these "time-study men" are now engaged in developing elementary scientific knowledge where before existed only rule of thumb.Even the motion study of Mr Gilbreth in bricklaying (described on pages 77 to 84) involves a much more elaborate investigation than that which occurs in most cases.The general steps to be taken in developing a simple law of this class are as follows: