登陆注册
4707200000217

第217章

At this juncture a new and brilliant method originated in Pfeffer's laboratory. (See Pfeffer, "Annals of Botany", VIII. 1894, page 317, and Czapek, Pringsheim's "Jahrb." XXVII. 1895, page 243.) Pfeffer and Czapek showed that it is possible to bend the root of a lupine so that, for instance, the supposed sense-organ at the tip is vertical while the motile region is horizontal. If the motile region is directly sensitive to gravity the root ought to curve downwards, but this did not occur: on the contrary it continued to grow horizontally. This is precisely what should happen if Darwin's theory is the right one: for if the tip is kept vertical, the sense-organ is in its normal position and receives no stimulus from gravitation, and therefore can obviously transmit none to the region of curvature. Unfortunately this method did not convince the botanical world because some of those who repeated Czapek's experiment failed to get his results.

Czapek ("Berichte d. Deutsch. bot. Ges." XV. 1897, page 516, and numerous subsequent papers. English readers should consult Czapek in the "Annals of Botany", XIX. 1905, page 75.) has devised another interesting method which throws light on the problem. He shows that roots, which have been placed in a horizontal position and have therefore been geotropically stimulated, can be distinguished by a chemical test from vertical, i.e. unstimulated roots. The chemical change in the root can be detected before any curvature has occurred and must therefore be a symptom of stimulation, not of movement. It is particularly interesting to find that the change in the root, on which Czapek's test depends, takes place in the tip, i.e. in the region which Darwin held to be the centre for gravitational sensitiveness.

In 1899 I devised a method (F. Darwin, "Annals of Botany", XIII. 1899, page 567.) by which I sought to prove that the cotyledon of Setaria is not only the organ for light-perception, but also for gravitation. If a seedling is supported horizontally by pushing the apical part (cotyledon) into a horizontal tube, the cotyledon will, according to my supposition, be stimulated gravitationally and a stimulus will be transmitted to the basal part of the stem (hypocotyl) causing it to bend. But this curvature merely raises the basal end of the seedling, the sensitive cotyledon remains horizontal, imprisoned in its tube; it will therefore be continually stimulated and will continue to transmit influences to the bending region, which should therefore curl up into a helix or corkscrew-like form,--and this is precisely what occurred.

I have referred to this work principally because the same method was applied to roots by Massart (Massart, "Mem. Couronnes Acad. R. Belg." LXII.

1902.) and myself (F. Darwin, "Linnean Soc. Journ." XXXV. 1902, page 266.)with a similar though less striking result. Although these researches confirmed Darwin's work on roots, much stress cannot be laid on them as there are several objections to them, and they are not easily repeated.

The method which--as far as we can judge at present--seems likely to solve the problem of the root-tip is most ingenious and is due to Piccard.

(Pringsheim's "Jahrb." XL. 1904, page 94.)

Andrew Knight's celebrated experiment showed that roots react to centrifugal force precisely as they do to gravity. So that if a bean root is fixed to a wheel revolving rapidly on a horizontal axis, it tends to curve away from the centre in the line of a radius of the wheel. In ordinary demonstrations of Knight's experiment the seed is generally fixed so that the root is at right angles to a radius, and as far as convenient from the centre of rotation. Piccard's experiment is arranged differently.

(A seed is depicted below a horizontal dotted line AA, projecting a root upwards.) The root is oblique to the axis of rotation, and the extreme tip projects beyond that axis. Line AA represents the axis of rotation, T is the tip of the root just above the line AA, and B is the region just below line AA in which curvature takes place. If the motile region B is directly sensitive to gravitation (and is the only part which is sensitive) the root will curve (down and away from the vertical) away from the axis of rotation, just as in Knight's experiment. But if the tip T is alone sensitive to gravitation the result will be exactly reversed, the stimulus originating in T and conveyed to B will produce curvature (up towards the vertical). We may think of the line AA as a plane dividing two worlds. In the lower one gravity is of the earthly type and is shown by bodies falling and roots curving downwards: in the upper world bodies fall upwards and roots curve in the same direction. The seedling is in the lower world, but its tip containing the supposed sense-organ is in the strange world where roots curve upwards. By observing whether the root bends up or down we can decide whether the impulse to bend originates in the tip or in the motile region.

同类推荐
  • 宫女卷

    宫女卷

    本书为公版书,为不受著作权法限制的作家、艺术家及其它人士发布的作品,供广大读者阅读交流。汇聚授权电子版权。
  • 明会要

    明会要

    本书为公版书,为不受著作权法限制的作家、艺术家及其它人士发布的作品,供广大读者阅读交流。汇聚授权电子版权。
  • 轻重丁

    轻重丁

    本书为公版书,为不受著作权法限制的作家、艺术家及其它人士发布的作品,供广大读者阅读交流。汇聚授权电子版权。
  • 净土救生船诗

    净土救生船诗

    本书为公版书,为不受著作权法限制的作家、艺术家及其它人士发布的作品,供广大读者阅读交流。汇聚授权电子版权。
  • 难岁篇

    难岁篇

    本书为公版书,为不受著作权法限制的作家、艺术家及其它人士发布的作品,供广大读者阅读交流。汇聚授权电子版权。
热门推荐
  • 边缘阳光

    边缘阳光

    别的总裁追妻靠砸钱,这个总裁追妻靠哭穷,靠讲演!苏头儿,借我点钱,家里要揭不开锅了!黑大个儿,努力工作,你一定行,我看好你呦!苏头儿,这次出差我当翻译,这是你的保险出险单,快签字吧。好的,黑大个儿,笔墨伺候!黑大个儿:英文不好人还懒,吃亏了吧?签字画押卖给我了都不知道,苏晓荷,从今开始你就是我合法妻子了……苏父:众里寻他千百度,苏梅,你何时给我生了个女儿都不告诉我!苏母:你一走了之,我上哪儿找你!苏父:哦啊,我的财产总算有人继承了……苏母:想得美,我家晓荷可不爱财!--情节虚构,请勿模仿
  • 《案例。》系列(第5辑)

    《案例。》系列(第5辑)

    中国虽已成为名副其实的“世界工厂”,但我们却没有迎来管理上的重大突破,甚至连“更新”都鲜有,我们更多的是“狂热的跟从”,我们的竞争力来自于廉价的劳动力和消耗更多的资源,我们被“东芝人”嘲笑是“水果败子”——连种水果的都不是,因为我们只知道市场上需要什么水果,就去包装贩卖什么。过去,我们常常自豪于用了不到10年时间,就走过了西方发达国家100年的历程,但我们却不知道,也是在这样的过程中,我们忽略了支撑西方现代工业体系最初的管理起源。在高速成长的背后,可能掩藏着某一天忽然来到的破坏性崩溃,而这无疑是我们最不愿意看到的。
  • 痴相公(上)

    痴相公(上)

    玉夏国皇商长女罗缜自幼与隔壁良家订下亲事,罗父在得知良家儿子天生痴傻后退婚,罗、良两家断交,良家转迁杭夏国。罗缜十六岁时,遭为父报仇的初恋情人当众抛弃,成为了整座玉夏国的笑柄,年至双十仍待字闺中,朋友晋王提出纳她为妾,被婉言谢绝。杭夏国国君亲笔致函玉夏国君,为旗下皇商良德独子良之心向玉夏国皇商罗子缣爱女求婚,为替父母分忧,罗缜乔装前往杭夏国设法退亲,与良之心不期而遇,日久生情。
  • 重生之无双战防

    重生之无双战防

    重生归来,意想不到的人生从此展开!多位面的跨越,最终铲除罪魁祸首,成就非凡人生。
  • Entre el trabajo y el cuidado de los nuestros

    Entre el trabajo y el cuidado de los nuestros

    La asombrosa cifra de 42 millones de estadounidenses se enfrenta a los desafíos de tener que cuidar de un ser querido y trabajar al mismo tiempo. A pesar de que la prestación de cuidados puede ser una experiencia muy gratificante, este rol acarrea una enorme responsabilidad--y presiones--. Esta guía de AARP te ofrece recursos prácticos y sugerencias fáciles de encontrar cuando más los necesitas, ya sea que estés cuidando diariamente a un ser querido, estés planificando para una situación futura o te encuentres en medio de una crisis. Y de igual importancia, este libro te ayuda a ocuparte del cuidador--o sea, de ti mismo--. La autora, Amy Goyer, experta en envejecimiento y familias, ofrece información, inspiración y su propia y conmovedora historia como encargada directa del cuidado de sus padres.
  • 最受感动的经典文学故事(最受学生感动的故事精粹)

    最受感动的经典文学故事(最受学生感动的故事精粹)

    本书中多个饱含快乐、阳光的小故事,融趣味、悬念和哲理于一体,用睿智的语言告诉每一个渴望成功的孩子,保持快乐的心态才能找到生活和学习中的快乐,帮助你走向人生的顶峰。
  • Andromache

    Andromache

    本书为公版书,为不受著作权法限制的作家、艺术家及其它人士发布的作品,供广大读者阅读交流。汇聚授权电子版权。
  • 珞珈谪仙记

    珞珈谪仙记

    这里是仙侠世界中的“珞珈界”。工学部主教变成通天高楼;网球场变成龙腾云海;鲲鹏广场云抟九万;樱花大道花开千里;鉴海烟波无极;珞樱大帝在珞珈山悟道成圣,于樱花城堡建立珞樱帝国……将珞珈山下的世界变成一片神仙浩土,其中人往来修道,斩妖除魔,生死轮回……歌曰:“天地泰,日月长。珞珈界,图自强。南北东西,樱花无量。乾坤上下,万道争光。黄鹄一举兮,知山川之纡曲。息焉游焉,亿兆莫疆。再举兮,知天地之圆方。藏焉修焉,同于阴阳。念茫茫宙合,悠悠文物。鸡鸣风雨,日就月将。游心太玄兮,踏浪溟沧。明明德兮,履道皇皇。大道兮无亲,珞珈兮永昌。”
  • 醉枕江湖

    醉枕江湖

    遥遥汉阳峰,幽幽康王谷。关中无敌手,身败隐微处。倜傥少侠客,一朝入江湖。玄铁双勾戟,北斗天罡步。廿经虽奇门,怎显方家术?世事若盘棋,黑白胜无数。扬我混元功,教四海臣服。唯恨人远去,青山做独孤!正是:金庸封笔古龙归,此间论武有阿谁?诸君看我谈笑里,江湖枕戟一把醉!
  • 霸剑灭武

    霸剑灭武

    剑道没落的世界,少年偶得远古七剑之一的破天剑,从此一人一剑,斩破天地,逍遥天外!