I catch a glimpse of this reason, the real one. The glass pond was originally occupied by a dozen Dytisci, or water beetles, whose diving performances are so curious to watch. One day, meaning no harm and for want of a better receptacle, I fling among them a couple of handfuls of caddis worms. Blunderer that I am, what have I done! The corsairs, hiding in the rugged corners of the rock work, at once perceive the windfall. They rise to the surface with great strokes of their oars; they hasten and fling themselves upon the crowd of carpenters. Each pirate grabs a sheath by the middle and strives to rip it open by tearing off shells and sticks. While this ferocious enucleation continues with the object of reaching the dainty morsel contained within, the caddis worm, close pressed, appears at the mouth of the sheath, slips out and quickly decamps under the eyes of the Dytiscus, who appears to notice nothing.
I have said before that the trade of killing can dispense with intelligence. The brutal ripper of sheaths does not see the little white sausage that slips between his legs, passes under his fangs and madly flees. He continues to tear away the outer case and to tug at the silken lining. When the breach is made, he is quite crestfallen at not finding what he expected.
Poor fool! Your victim went out under your nose and you never saw it. The worm has sunk to the bottom and taken refuge in the mysteries of the rock work. If things were happening in the large expanse of a pond, it is clear that, with their system of expeditious removals, most of the lodgers would escape scot-free.
Fleeing to a distance and recovering from the sharp alarm, they would build themselves a new scabbard and all would be over until the next attack, which would be baffled afresh by the selfsame trick.
In my narrow trough, things take a more tragic turn. When the sheaths are done for, when the caddis worms that are too slow in making off have been eaten up, the Water beetles return to the rockery at the bottom. Here, sooner or later, there are lamentable happenings. The naked fugitives are discovered and, succulent morsels that they are, are forthwith torn to pieces and devoured.
Within twenty-four hours, not one of my band of caddis worms is left alive. In order to continue my studies, I had to lodge the water beetles elsewhere.
Under natural conditions, the caddis worm has its persecutors, the most formidable of whom appears to be the Water beetle. When we consider that, to thwart the brigand's attacks, it has invented the idea of quitting its scabbard with all speed, its tactics are certainly most appropriate; but, in that case, an exceptional condition becomes obligatory, namely, the capacity for recommencing the work. This most unusual gift of recommencing it possesses in a high measure. I am ready to see its origin in the persecutions of the Dytiscus and other pirates. Necessity is the mother of industry.
Certain caddis worms, of the Sericostoma and Leptocerus species, clothe themselves in grains of sand and do not leave the bed of the stream. On a clear bottom, swept by the current, they walk about from one bank of verdure to the other and do not think of coming to the surface to float and sail in the sunlight. The collectors of sticks and shells are more highly privileged. They can remain on the level of the water indefinitely, with no other support than their skiff, can rest in unsubmersible flotillas and can even shift their place by working the rudder.
To what do they owe this privilege? Are we to look upon the bundle of sticks as a sort of raft whose density is less than that of the water? Can the shells, which are always empty and able to contain a few bubbles of air in their spiral, be floats? Can the big joists, which break in so ugly a fashion the none too great regularity of the work, serve to buoy up the over-heavy raft? In short, is the caddis worm versed in the laws of equilibrium and does it choose its pieces, now lighter and now heavier as the case may be, so as to constitute a whole that is capable of floating?
The following facts are a refutation of any such hydrostatic calculations in the animal.
I remove a number of caddis worms from their sheaths and submit these, as they are, to the test of water. Whether formed wholly of fibrous remnants or of mixed materials, not one of them floats.
The scabbards made of shells go to the bottom with the swiftness of a bit of gravel; the others sink gently. I experiment with the separate materials one by one. No shell remains on the surface, not even among the Planorbes, which a many-whorled spiral ought, one would think, to keep afloat. The fibrous remnants must be divided into two categories. The first, darkened by time and soaked with moisture, sink to the bottom. These are the most plentiful. The second, considerably fewer in number, of more recent date and less saturated with water, float very well. The general result is immersion, as in the case of the intact scabbards. I may add that the animal, when removed from its tube, is also unable to float.
Then how does the caddis worm manage to remain on the surface without the support of the grasses, considering that itself and its sheath are both heavier than water? Its secret is soon revealed.
I place a few high and dry on a sheet of blotting paper, which will absorb the excess of liquid unfavorable to successful observation.
Outside its natural environment, the animal moves about violently and restlessly. With its body half out of the scabbard, this time composed entirely of fibrous matter, it clutches with its feet at the supporting plane. Then, contracting itself, it draws the scabbard towards it, half-raising it and sometimes even making it assume a vertical position. Even so do the Bulimi move along, lifting their shell as they complete each crawling step.